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ABSTRACT 
 
The BIG-MAP European project aims at revolutionizing next generation battery innovation, notably 
by greatly accelerating R&D capabilities. To advance this goal, BIG-MAP focuses on creating a 
database composed of modelling, electrochemical and characterization data collected in standard 
conditions using state-of-the-art experimental methods. This database will be used to train artificial 
intelligence models designed to accelerate materials discovery. Central to this database is the work 
of Work Package 5 (WP5), a cornerstone dedicated to advanced materials characterization. WP5 
main goal is to design and build a European experimental platform performing multi-modal 
characterizations using standardized cells, protocols, data collection, data treatment and data 
analysis.  
 
The large datasets produced in WP5 require robust methodologies that streamline data analysis 
while ensuring consistency and reliability. Data analysis standardization and automation involves 
the development of common protocols, formats and tools that enable seamless data interpretation 
across diverse experiments and instruments. Additionally, this will ensure that the generated data 
in BIG-MAP forms a robust and reliable foundation for further advances. In order to facilitate these 
critical functions, the standardization and automation of experimental data and observables emerge 
as an imperative.  
 
The primary objective of this report is to present the data analysis conducted within WP5, focusing 
on the intricate landscape of data analysis. In WP5, data is produced in research laboratories and 
large-scale facilities, resulting in sizeable and varied datasets often requiring relatively complex 
post-processing and in-depth analysis. Here, we have selected specific techniques to demonstrate 
the need for standardization and automation based on real use cases. In line with this methodology, 
we developed protocols for data analysis standardization for XRD, XPS and Raman/FTIR techniques 
following specific schemes (i.e., discussions among experts and/or open round-robin analysis 
exercises for experts and non-experts). We performed automation for XRD, Raman, X-ray 
tomography segmentation and µXRD imaging datasets with procedures developed in WP5, such as 
data handling and analysis workflows, and novel analysis tools using machine learning approaches, 
as well as using more general automated analysis tools developed in collaboration with WP9. All of 
this was done using data formats defined jointly with WP9.  
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In this section, we provide a contextual overview of this deliverable. We present the organization 
and goals of WP5, introduce the objectives of the deliverable and describe the data analysis 
approaches. 

 Organization of WP5 and goal of the deliverable 
WP5 centres on characterizing materials and battery cells through a combination of laboratory and 
large-scale facilities (LSFs) experimental methods. The aim is to establish the foundation for a 
European multi-modal experimental platform using standardized cells, protocols, metadata, data 
collection, data treatment and data analysis.  
 
WP5 is organized in four tasks and five deliverables. Task 5.1 built an experimental matrix, published 
in deliverable D5.1, describing partners’ capabilities and characterization techniques. The matrix-
guided experiment selection for experimental workflows. Task 5.2 defined experiment categories, 
organized concurrent multi-site experiments, and established methodologies and proof-of-concept 
for a European multi-modal platform. Deliverable D5.5 documents the initial Tier 1 experimental 
workflow. The forthcoming deliverable D5.2 will expound on the proof-of-concept workflow and its 
future implications. Task 5.3 designed, prepared and executed Tier 2 experiments on a selected 
chemistry, demonstrating the effort on coordinating multi-technique and multi-scale experiments. 
Deliverable D5.3 showcases this experimental workflow. Lastly, task 5.4 is dedicated to the data 
analysis of experimental results derived from the aggregate of BIG-MAP experiments carried out 
within WP5. It seeks to standardize and automate data analysis across single and multi-techniques 
approaches, to provide uniform data and observables to the consortium. It includes the use of 
automated analysis modules developed in collaboration with WP9, the development of a novel data 
analysis tool for selected chemistry, and the resolution of big data challenges. The present report 
provides an in-depth description of task 5.4. 

 Overview of Task 5.4 
Data generated in WP5 is complex and diverse in terms of structure, scale and origin, resulting from 
various materials, experimental workflows and scientific queries. To effectively analyze this data, 
we emphasize standardization, automation and correlation as crucial components, ensuring 
readability, reproducibility, and interoperability.  
Given the intricate nature of WP5's data, we focus on specific use cases to illustrate the 
implementation of these approaches. Figure 1 provides an overview of the data analysis work within 
WP5. We have chosen to highlight four specific use cases: crystallographic study of LNO including 
the data analysis and automation of XRD data by CEA, DTU and ILL, vibrational spectroscopy focused 
on Raman and FTIR analysis by CTH, post-mortem analysis on reproducibility using XPS lead by CEA, 
and tomography segmentation including machine learning approaches by ESRF and DTU. Each one 
of these use cases was driven by specific scientific objectives, involving the development of tailored 
data analysis methods, tools and algorithms. Guidelines for data analysis standardization and 
automation have been shaped based on the insights gained from our data analysis effort in the 
frame of these use cases.  
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Analysis of the data obtained during the experimental workflow (D5.3) has started, and we have just 
begun addressing multi-technique correlation. This last undertaking is a forthcoming challenge that 
will reach maturity in future projects. 
 

 

 
Figure 1. Scheme for the data analysis work within WP5. 
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 Data analysis approaches 
 
Data analysis standardization 
Reproducibility is a major principle of the scientific method [1, 2]. The results obtained after 
analyzing data from an experiment should be reproducible, i.e., we should be able to duplicate the 
results using the same materials (data) and procedures (methods) as were originally used [3]. In 
order to achieve this, we need to standardize not only experiments but also data analysis. Task 5.4 
aims at standardizing protocols and workflows for the data analysis for individual techniques. This 
also implies standardizing the data format of all techniques, following common format defined in 
WP9 and ontologies defined in WP7 and thus enabling all users to access, understand and process 
specific data.  
We have identified relevant techniques that demonstrate the necessity for data analysis 
standardization. Here, we elaborate on XRD, XPS and Raman/FTIR. 
 
Data analysis automation 
Automation is pivotal in data analysis, closely linked to standardization and big data. With the 
increase in data volume from various experiments (e.g., operando, tomography), automating data 
analysis is more crucial than ever. Manual processing is time consuming and prone to errors in every 
step in the process. Automation allows for fast processing and ensures accuracy and consistency in 
data analysis. Using programming languages such as Python simplifies the process. Scripts can 
handle tasks on data files automatically, even identifying patterns for data-driven decisions.  
In this report, we focus on the data analysis automation of operando XRD, Raman and µXRD imaging 
data, and tomography segmentation through machine learning approaches. The need for 
automated tools to perform standardized spectroscopy data motivated the collaboration between 
WP5 and WP9. This resulted in the development of the PRISMA1 software, an automated analysis 
module that can handle large amounts of spectral data in an efficient and reproducible way. 
 
Data analysis correlation 
Characterization techniques cover different chemical/structural properties and length/time scales 
within battery cell processes. Correlating complementary techniques is fundamental to 
understanding these mechanisms. Data analysis can also benefit from simulations and modeling, 
driving collaborative efforts with WP2 and WP3. Within this report, we present a successful 
collaboration using both experimental FTIR data and molecular dynamics (MD) simulations. 

 
The crystallographic study of LNO use case was selected to showcase the implementation of the 
data analysis approaches. We include three characterization techniques in operando mode, XRD, 
µXRD imaging and NPD. 
 

 
1 PRISMA: a robust and intuitive tool for high-throughput processing of chemical spectra. PRISMA is an open source and 
user-friendly software to visualize and analyze spectra from in situ and operando experiments. It is based on Python for 
a reproducible, high-throughput processing of multiple patterns in an automatable way. The main features are the 
implementation of methods for trimming, baseline correction and peak fitting [4]. The code and a tutorial are available 
through the BIG-MAP App Store, https://big-map.github.io/big-map-registry/apps/prisma.html. 
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 The scientific motivation 
LNO (LiNiO2) undergoes crystal structure changes during cycling, starting from a hexagonal phase 
(H1) in its pristine state, followed by transitions to monoclinic (M), then a second (H2) and a third 
(H3) hexagonal phase upon charge and delithiation of the material [5-7]. These phase transitions 
can result in multi-phase regions where more than one phase coexist. An operando approach is 
essential to characterize the crystal structure evolution and phase transitions during cycling. This is 
particularly significant as the behavior in the charged state significantly impacts materials 
performance with delithiation causing substantial volume shrinkage, primarily attributed to the 
H2/H3 transition (which alone accounts for a 4-5% volume change [8, 9]). The coexistence of phases 
with different volumes leads to interfacial strain, resulting in cracks along the primary and secondary 
particles [7]. The primary objective of XRD experiments in this case is to identify phases and estimate 
lattice parameters for LNO, specifically focusing on investigating lithiation and LNO phase transitions 
during battery cycling. 
In this section, we present XRD data analysis standardization. Notably, our work introduces novel 
aspects as we demonstrate how traditional analysis software programs can be coupled with newer 
ones - such as the BIG-MAP app PRISMA - to automate background subtraction and perform an 
initial identification of phases during battery cycling. Furthermore, we illustrate methods to 
automate the refinement of multi-phase data and µXRD imaging in operando. 

 Implementation of data analysis standardization 

2.2.1 Data analysis of powder diffraction 
Neutron and X-ray powder diffraction (NPD, XRD) are complementary techniques to study the 
crystalline structure of a sample, i.e., the position of the atoms in the cell and therefore lattice 
parameters (see  Annex 9.1). NPD and XRD data are represented in diffractions patterns, with 
intensity vs. scattering angle (2θ) as shown Figure 2. 
 

 
Figure 2. LNO diffractogram obtained at the ESRF beamline ID31. The diffractogram shows the scattered 
pattern of the X-rays in scattering angle 2θ vs. intensity. The insert zooms-in on one of the peaks.  

The position and intensity of each peak in the diffractogram depends on various structural and 
experimental information: (1) crystal structure (units cell parameters, atomic parameters, etc.), (2) 
morphology (strain, stress, preferred orientation, etc.), and (3) instrumental information (incident 
wavelength, geometry configuration, sample alignment, etc.). Moreover, the measured diffraction 
pattern is a sum of the diffraction patterns produced by each phase (different type of materials) in 
a sample. 
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Data analysis is performed by minimizing the difference between the experimental data and 
reference patterns from databases, by changing structural/morphological/experimental 
parameters. The primary method for the full pattern fit is the Rietveld fit [10] used for refining 
crystal structures, lattice parameters, and reflections for all phases in the sample. This employs a 
non-linear least square approach to minimize a weighted residual function. A high level of 
quantitative phase analysis accuracy is reached by using the entire diffractogram. 

Refinement software 
Within WP5 we primarily use the open source software FullProf [11] and the commercial software 
Topas [12]. Both software packages can be used through a graphical user interface (GUI) and are 
scriptable. Topas input files (.INP) can be edited using JEdit, while FullProf input files (.PCR) can be 
modified with any text editor. Moreover, FullProf is executable through command lines, making it 
suitable for integration into customized Python scripts.  
Detailed guidelines to perform general refinement have been described by the International Union 
of Crystallography Commission on Powder Diffraction [13]. Based on these recommendations, 
together with specific Topas2 and FullProf3 best practices, we developed specific protocols to refine 
BIG-MAP LNO data that can be extrapolated further to other chemistries. 

A priori information for refinement 
Before refining, the following sample and experimental condition information are required: 
• diffractometer parameters and experimental conditions (incident wavelength, zero-shift, and 

instrument resolution) are obtained by measuring a reference sample under the same 
conditions as the rest of the experiment.  

• Chemical composition and crystal structure information (space group, approximate unit cell 
parameters and atomic positions) are extracted from crystallographic datasets available online. 

2.2.2 Defining protocols for XRD data analysis standardization 

Methods 
Figure 3 portrays the systematic approach we have adopted to develop protocols for XRD data 
analysis on LNO cycling data. During Tier 1 experiments, XRD experiments were carried out at MAX 
IV by DTU and at the ESRF by CEA. The produced datasets were centrally stored within the BIG-MAP 
archive4 and metadata in the BIG-MAP Notebook5, ensuring accessibility for all consortium partners. 
DTU, CEA and ILL performed independent and parallel data analysis, producing a report 
documenting the details to reproduce the refinement process. Annex 9.2 presents the report 
template. The team involved in this data analysis effort comprised partners with diverse experience 
in refining powder neutron and X-ray diffraction data, each contributing with their expertise in the 
data refinement. 
Following the parallel data refinement process, we deliberated on refinement strategies, analyzed 
outcomes, and ultimately arrived at a consensus on common best practices for refining XRD data in 
the context of BIG-MAP batteries.  

 
2 https://topas.webspace.durham.ac.uk/ 
3 https://www.ill.eu/sites/fullprof/ 
4 https://archive.big-map.eu/ 
5 http://big-map-notebook.u-picardie.fr 



 

Battery Interface Genome - Materials Acceleration Platform 
 

 

10 

 

 
Figure 3. Illustration of the process used for defining protocols to standardize the XRD data analysis for the 
selected chemistry. From left to right, two institutions conduct XRD measurements, generating datasets 
that are uploaded to the BIG-MAP archive and metadata uploaded to the BIG-MAP Notebook, making 
them available to the entire consortium. Partners download one (or multiple) datasets and conduct 
independent data analysis. The results are compared, and interactive discussions are established to 
converge on protocols for XRD data analysis. 

Protocols for XRD data analysis 
The XRD data analysis process can be approached using different methods, depending on the data 
origin and user preferences. We report data obtained at the DanMAX beamline (MAX IV), for which 
standards and empty cell measurements are required; and at the ID31 beamline (ESRF), where, 
typically, standards are measured by the beamline scientists and empty cell measurements were 
not necessary since there were no amorphous background contribution. Approaches to refine these 
data share the same strategy. However, DanMAX data had an additional process in order to account 
for the background contribution. XRD peaks from Al, Cu and glassy carbon background were refined 
first, and refined parameters (lattice parameters, scale factors and thermal displacement 
parameters of Al and Cu atoms) were fixed for the following part.  
 
Figure 4 illustrates the guidelines we have followed for refining ex situ XRD data. We emphasize 
three initial aspects: (1) accurate instrument calibration and zero-point determination, (2) close 
matching of initial lattice parameters values to the real ones, and (3) proper consideration of the 
background signal. The first two aspects are standard procedures, while background subtraction can 
be optimized by integrating traditional and specific refinement software packages with more 
versatile versions.  Additionally, refinement has to be done in steps since some parameters have a 
greater impact on the overall shape and larger scales (i.e., scale factor, background) than others. 
Also, during refinement, after each iteration cycle, the refinement must be assessed equally at both 
low and high scattering angles, and metrics should be also followed.  

Important considerations before refinement 
• The different phases in the sample must be identifiable. For LNO: phase transitions from H1, M, 

H2 to H3. 
• To reach convergence during refinement, requisite a priori information is needed (e.g., lattice 

parameters of the different phases).  
This information is based on relevant literature, including references [5-7].  
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Figure 4. Schematics for the XRD data analysis process. 

Background subtraction 
In our workflow, we have integrated PRISMA for background subtraction. For this, we have chosen 
the Asymmetric Least Squares (AsLS) method developed by Eilers and Boelens [14, 15]. The AsLS 
method offers an excellent approach for baseline estimation. The method finds a curve that is both 
smooth and faithful to the spectrum while asymmetrically penalizing positive residuals, where the 
analytical peaks are found. The optimal baseline signal is determined through an iteratively 
minimization of a penalized least squares function. Within PRISMA, two parameters are 
tuned: penalty p and smoothness 𝜆𝜆. Penalty p, linked to the weights of the data, emphasizes the 
relative importance of data points at the spectrum’s base. Smoothness 𝜆𝜆 controls the smoothness 
of the baseline curve, for which larger 𝜆𝜆 values produce flatter curves (we refer the reader to the 
PRISMA publication for more information). Performing the background subtraction with PRISMA 
allows for fast automation during operando experiments (see Section 2.3.1.1). 
This approach is optimal for LNO patterns, since there is no need to manually identify regions for 
interpolation. Many parameters are sensitive to background (e.g., scale factor, occupancy 
parameters, thermal parameters), thus optimizing background subtraction is key. 

Reporting 
For each data analysis process, a report detailing all steps carried out is mandatory. This provides 
the basis for documenting the entire analytical process. Through clear articulation of 
methodologies, data sources, assumptions and conclusions, the report provides a transparent 
record for future reference and replication.  
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 Implementation of data analysis automation 

2.3.1 Operando XRD   
Operando XRD experiments produce thousands of diffractograms throughout battery cycling, each 
of them consisting of several peaks that represent the electrode structure during lithiation and de-
lithiation processes. Automating data analysis is then time-efficient besides ensuring accuracy. It is 
crucial to adhere to specific protocols to handle and treat the data appropriately, as consecutive 
datasets are correlated.  
In this context, we describe two approaches towards the automation of XRD data analysis. The first 
one uses PRISMA to automate the analysis of individual peaks. The second one involves sequential 
Rietveld refinement applied to the entire diffractograms, enabling the refinement of crystal 
structures and phase quantification in a sequential manner. 

2.3.1.1 Automated data analysis with PRISMA for single peaks 
While the Rietveld refinement method is well-suited for fitting entire diffractograms, the PRISMA 
software is specifically suited for fitting individual peaks. 
PRISMA was used to fit the (00l) reflections of LNO, as well as the electrode-independent 
background from operando XRD data obtained at DTU. Specifically, the 003 reflection was used. Its 
shift in position during cycling corresponds to a change in the lattice parameter c, which is an 
indicator of phase changes in the electrode, notably due to changes in lithium concentrations. After 
visual inspection, a specific approach was adapted. For the background, we follow the directions 
described in Section 2.2.2. For the peaks, two pseudo-Voigt profiles were applied, one at low (18.4-
18.7 degrees) and high (19.5-19.7 degrees) angles, corresponding to the H1/M/H2 and H3 phase 
regions, respectively. Figure 5 displays this fit to a single diffractogram. 
 

 
Figure 5. Extracted from Figure 6 in Flores et al. [4]. Zoom to the 003 reflection of a single XRD diffractogram 
of LNO obtained during operando experiments in biphasic region. Background-subtracted data is shown in 
red circles. The black and blue lines are fits to the H2 and H3 phases, respectively. 

This approach is purely mathematical and does not require any knowledge of contiguous (temporal) 
data nor the physical properties of the sample. Fit convergence is quickly achieved using the same 
initial assumptions for all data, since the positions of the two components do not vary significantly. 
This analysis is presented in the PRISMA paper [4]. 
The processing of the XRD operando data was done using the PRISMA API in Python. The raw data, 
formatted in xy format, is compatible with PRISMA's reading capabilities. PRISMA processes several 
thousand patterns in just a few minutes. In this case study, the main objective of using PRISMA was 
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to perform a rapid analysis focused on a specific scattering angle range within the diffractogram, 
which exclusively includes the targeted peak of interest. The evolution of the c lattice parameter 
during cycling allowed identification of the different phases. 

2.3.1.2 Automation of sequential Rietveld refinement 
Semi-automated Rietveld refinement of operando XRD data was done to obtain the evolution of all 
lattice parameters during cycling. The multi-phase nature of the material during cycling implies an 
inherent system complexity, and sequential refinement cannot be fully automated, i.e., some 
manual intervention is still required to ensure the accuracy of the refinement results.  

From ex situ to operando sequential refinement  
In Section 2.2 we discussed about the need for standardizing XRD data analysis and presented a 
scheme for standardized analysis of ex situ XRD data. Operando sequential refinement builds on 
these protocols. However, as stated, sequential Rietveld refinement of multiphase samples cannot 
be completely automated. Sequential refinement strategies rely on the smooth transition of 
patterns along the evolution axis, which, in our case, is time/cycling. During cycling, LNO phases shift 
from H1 to M to H2 to H3, with biphasic regions appearing, often resulting in abrupt pattern 
changes. In consequence, sequential Rietveld refinement involves a semi-automatic process, as 
manual input is required to identify when the phase transitions occur. Indeed, the refined 
parameters from one-time step are used as starting parameters for the subsequent diffractogram 
refinement. The most reliable way to perform the phase identification is by fitting a single peak 
through all diffractograms obtained during cycling, as discussed in Section 2.3.1.1. We can thus 
identify the scan numbers where the phase transitions occur and/or set limits for the lattice 
parameter sizes for each phase. 
During the sequential refinement, only two sets of parameters for each phase are refined: lattice 
parameters and scale factors. All other parameters undergo zero or negligible change over the 
cycling and can thus be set as fixed. As discussed, instrumental (broadening) resolution parameters 
are previously refined against a standard reference. Accurate starting crystallographic structure 
parameters for each phase are also needed and must be determined from an initial XRD pattern.  
 
The implementation of this strategy is software dependent. In any scenario, two constraints are 
applicable to all software: 

- The list of diffractograms provided to the software must be chronologically sorted. 
- The identification of phase transitions and the limiting values of the lattice parameters are 

needed. 
 
 In the Topas software, the process of sequential refinement is straightforward due to the 

existence of specific macros developed for this purpose. Additionally, Topas can handle 
conditional statements and parameterized variables, which is essential for handling phase 
transitions. With Topas: 
- A unique input INP file is used. The file list with the experimental data is provided. 
- The crystallographic structure information for all phases (H1, M, H2 and H3) is written. 
- Constraints for lattice parameters are imposed to avoid overfitting. For individual phases, 

scale factors are fixed to zero if certain lattice parameters reach a limit value, e.g., 
‘update =If(Or(LNO_1_a==2.86, LNO_1_c==14.27), 1e-10,Val ); 

min = 1e-10;'1.37829701e-05_2.58493653e-07’ 
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- During the sequential refinement, only the lattice parameters and scale factors for the 
respective phases are refined. 

 
 In the FullProf software, the execution of sequential refinement can be obtained by developing 

specific Python scripts and using FullProf via command lines. Figure 6 illustrates the sequential 
refinement process. The steps are as follows: 
- Prepare an individual input file, PCR, for each phase and multi-phase configuration. For the 

first scan of each phase, refine parameters following protocols described in Section 2.2.2. 
Then, set to fixed all parameters but lattice parameters and scale factors. 

- Create a list of diffractograms to be refined sorted by timestamp, which will be provided to 
(or created by) a Python script. These will be used as filename variables to be modified in 
the PCR files at each iteration. 

- In the Python script, read the starting PCR file. Modify the data file name of the diffractogram 
to be refined according to the list. Refine and save the ensemble lattice parameters, scale 
factors and file name values in an external file. 

- For each subsequent diffractogram, modify the data file name and use the refined lattice 
parameters from the previous iteration as the new initial assumption then perform the 
refinement. Repeat this process iteratively until all diffractograms are processed. 

- This entire sequence is repeated for each phase or multi-phase configuration. 
- For multi-phase regions, a critical assessment of the phase fraction is essential to verify the 

effectiveness of the refinement process. Particular attention must be given to phases within 
multi-phase regions that show low phase fractions.  

 
 

 
 

  

Figure 6. FullProf sequential refinement process. 

Important considerations  
- Carefully refine the reference source and/or the initial diffractogram to obtain the most accurate 

instrumental values. 
- Starting parameters for refinement are always necessary. 
- Background should be accounted for accordingly, following methods described in Section 2.2. 
- Assess the quality of the refinement by storing metrics. 
 

Read PCR 
from Python 

script 

Modify 
input data 
filename

Refine

Save lattice 
parameters and 

scale factor

Save 
metrics

The same PCR file can be 
modified and reused. 

Read time-sorted list of 
diffractograms to modify 
input file name. 

Through command lines. 

Save this information in 
an external file. 
Information will be 
subsequently appended. 

Save key information to 
assess the quality of the 
refinement. 

Original PCR, with 
already well refined 

parameters. 

Only lattice parameters 
and scale factor set to 
be refined. 



 

Battery Interface Genome - Materials Acceleration Platform 
 

 

15 

2.3.2  Operando synchrotron µXRD imaging: a workflow for (semi) on-the-fly analysis 

2.3.2.1 Why do we need automatized data analysis?  
Reaction kinetics in batteries are heterogeneous at multiple length scales (particle, electrode, cell). 
Spatially resolving these heterogeneities is necessary to better understand how batteries work, and 
crucial to calibrate battery modelling. Heterogeneities in the depth of the electrodes have been 
measured in WP5 using operando synchrotron µXRD imaging at the ESRF. A micron-sized beam is 
scanned across an electrode producing a 2D map of the electrode in which every pixel contains a 
diffraction pattern. Typical pixel sizes are 3 µm in the electrode depth and 100 µm in plane. Each 
map takes approximately 5 min to acquire. Our operando experiment lasted 3 days and over 105 
detector images were produced. Clearly, an automated way of analyzing this dataset is necessary. 
Figure 7 illustrates the generated data complexity. 
 

 
Figure 7. Example of the generated data from our µXRD imaging experiment. Left side: the 2D map for one 
of the active material peaks. Right side: diffractogram at a position in the electrode. 

2.3.2.2 Workflow structure  
We have developed a workflow based on several Jupyter Notebooks built using in-house and 
existing modules enabling a nearly on-the-fly analysis of operando µXRD imaging. It takes about 4 
hours to set up the data treatment workflow for a given experiment. The structure of the workflow 
is shown Figure 8, and it comprises: (1) detector image integration using PyFAI6, (2) analysis of the 
diffraction patterns using PRISMA to obtain cell parameters and/or phase fractions, (3) extraction 
of metadata (motor positions, time, beam flux and energy), (4) import of electrochemical data (using 
Navani7), (5) direct correlation of structural parameters, metadata, and electrochemical data, (6) 
and visualization. The workflow is used on a regular basis on beamlines BM32, BM02, ID13 and ID31 
at the ESRF. 
 
All processed data are saved in csv (human readable) and npy (machine readable) formats. 
Metadata of the analyzed, as well as that of electrochemical data, are saved in json files. This allows 
for experimental and data analysis reproducibility. Future development of the workflow includes 
the merging of data and metadata into HDF5 files, replacing the npy and json files, and the addition 
of two techniques to the workflow, Small Angle X-ray Scattering imaging analysis and scattering 
tomography. The workflow will be released as open source on GitHub.  
 

 
6 https://pyfai.readthedocs.io/en/v2023.1 
7 https://github.com/the-grey-group 
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Figure 8. Schematics of the automated workflow for analyzing operando µXRD imaging. 

2.3.3 Analysis automation for NPD data at the D2B instrument at the ILL 
In the context of the on-the-fly visualization of NPD data, as described in Deliverable D5.3 (Section 
3.5), we have developed algorithms for automated data reduction and statistical analysis of 
diffractograms acquired at the D2B instrument at the ILL. 
The algorithms were constructed in two stages. Initially, fundamental algorithms for data reduction 
of individual measurement and pairwise diffractogram comparisons were written in a single file, 
D2Bdatareduction.py. Subsequently, a second script, automated_datacal.py, which 
calls the former script, was created to automate the data reduction process for all numors (raw data 
NeXus files) acquired during an experiment, along with a statistical analysis of the sequentially 
obtained diffractograms producing a PDF report. 

2.3.3.1 Automated data reduction 
We have outlined the specifics of data reduction and visualization for a single D2B measurement in 
Deliverable D5.3, Section 3.5.2.2. To summarize, one D2B measurement generates ten files, each 
containing twenty-five data matrices. In the following, we describe the data reduction automation 
procedure for all files obtained in an experiment. 
Automation relies on keywords in the numors’ metadata. There are two essential keywords used 
for this automation: 
 experiment_identifier: string variable which contains the experiment name provided 

by the user at the time of measurement. This parameter is used by the script to assign names to 
the resulting calibrated diffractograms, workspaces, as well as saved figures. 

 sequence_id: float-point variable that represents the time at which the measurement 
sequence was initiated. Files sharing the same sequence_id value were generated during the 
same measurement session, Detector Scan mode, requiring to be processed together. 

 
The automated_datacal.py script can be executed to apply data reduction to all numors in 
the rawdata folder by running: python automated_data.py. Calibrated 1D diffractograms 
in NeXus and text formats will be saved in the autogenerated Calibrated1D-nxs and 
Calibarted1D-txt folders, respectively.  
To process the data, numors are grouped according to their sequence_id values and processed 
together. Calibrated diffractograms are saved using the experiment_identifier variable as 
file name. 
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2.3.3.2 Automated data analysis 
The primary purpose of conducting the initial data analysis on the diffractograms from operando 
experiments is to detect any abrupt changes in the patterns, which may indicate phase transitions. 
The developed scripts were designed to provide an initial and quick overview of the differences 
between two diffractograms.  
The Comparison_spectra() function performs a statistical comparison of two numors. It 
accepts two string variables, which should be the names of two 1D NeXuS processed diffractograms 
located in the Calibrated1D-nxs folder. This function computes the subtraction of the two 
diffractograms and the division of one by the other. From the subtracted plot, it estimated the Root 
Mean Square Error (RMSE)8 and Pearson correlation coefficient9. Additionally, we also compute the 
Kolmorogov-Smirnov statistics10 between the two diffractograms. From the divided curve, statistical 
values are calculated including standard deviation, minimum, maximum, mean and median values. 
The function also generates a figure displaying three plots: an overplot, subtraction and division of 
the diffractograms (see Figure 9). 
 

  
Figure 9. Example of graphical comparison between two diffractograms. Top panel: overplot of the two 
diffractograms. Middle panel: subtraction of the two diffractograms. RMSE and Pearson coefficient are 
displayed. Bottom panel: division of the two diffractograms. The median, mean, minimum, maximum and 
standard deviation of the curve are given. Red horizontal lines represent the mean values, and the two 
blue-dash horizontal lines the ±3σdev+µmean values. 

By graphically and statistically visualizing the difference between two consecutive diffractograms, 
we can track changes in phases throughout cycling. This function can also be used to compare NeXus 
calibrated diffractograms, obtained from other instruments. 
While the Comparison_spectra() function can be directly used to compare two specific 
diffractograms, it is also integrated into the automated data calibration process. When multiple 

 
8 The RMSE is an absolute measure of the difference between the two diffractograms and is calculated as the square 
root of the mean of the squared differences between the two diffractograms values. It quantifies how far, on average, 
the two y-axis from each diffractograms are.  
9 The Pearson correlation coefficient measures the strength and direction of the linear relation between the two 
diffractograms. Low values of RMSE (close to zero), as well as high Pearson coefficient (close to one), indicate that the 
diffractograms are similar. 
10 The Kolmorogov-Smirnov (KS) statistic quantifies the maximum vertical distance between the cumulative distribution 
functions of the two diffractograms being compared, i.e., the largest discrepancy between them. Small values (close to 
zero) indicate that the two diffractograms are similar in their distribution. 
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diffractograms require data calibration, the comparison is conducted between two consecutive 
measurements in time. The output is provided in the form of a PDF file containing figures and 
statistical specifications. 
The scripts can be found on GitHub11. 

 On-the-fly data analysis tool 
We developed a data analysis tool employing a machine learning approach to perform on-the-fly 
phase identification in LNO electrodes during operando XRD experiments. The methodology for this 
work involves: 
1. Collect operando XRD data 
2. Refine the data and identify phases 
3. Aggregate electrochemical data to associate lattice parameters with lithiation values (x in 

LixNiO2) 
4. Extract lattice parameters, corresponding phases and lithiation  
5. Generate thousands of sets of phase-labeled lattice parameters, randomly generated within a 

specific range defined by the experimental data 
6. Simulate diffraction patterns from the generated lattice parameters 
7. Train convolutional neural network models on the simulated data 

a. Classifying phases (this work) 
b. Regressing x (future work) 

2.4.1 Experimental data handling and simulated data 
XRD data 
We use X-ray diffraction data from the ESRF (beamline ID31) for our analysis. Operando XRD data 
was sequentially refined using FullProf, and phase identification was conducted. Aggregation of the 
electrochemical data was done by matching the closest timestamps in the datasets with custom 
scripts. This process enabled us to extract refined lattice parameters, phases, and lithiation for each 
scan in the operando experiment. 

Generation of interpolated/randomized data 
We generate lattice parameters by means of interpolation and randomization using the refined 
lattice parameter values. For each phase (and biphasic area), we extract the minimum and maximum 
x values. We then iterate N times, generating a random x value within these limits during each 
iteration. For each randomly generated x value, we find the nearest lower and higher x values, and 
extract the minimum and maximum values for each lattice parameters within this x range. These 
values were used as constraints for generating random lattice parameters.  
Figure 10 illustrates an example of generated lattice parameters of the M phase for N=50 and 
N=500. Circles represent the refined data while green crosses correspond to the generated values. 
In theory, each x value should correspond to a unique set of lattice parameters. However, due to 
the rounding of floating-point numbers by different algorithms and the uncertainties in the 
refinement process, we observe some effects in the refined parameters in Figure 10. Typically, these 
values are averaged for better representing the data but here we have chosen to show all data. We 
selected our strategy for generating the lattice parameters to encompass a range of the typical 
values. 

 
11 https://github.com/cnherrera/automated-data-calibration-d2b-mantid 
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Figure 10. Example of generated lattice parameters from a limited number of refined ones. Circles 
correspond to refined values from the experimental data, while green crosses correspond to the generated 
parameters. Left and right panels display the generated values for 50 and 500 iterations, respectively. 

Simulated diffractograms 
We use FullProf in the command line version fp2k and executed through a Python script to 
simulate X-ray diffraction patterns from the generated lattice parameters grid. At each iteration, 
the input PCR file was modified by (over)writing the lattice parameter values and running the 
refinement. Due to the time-consuming nature of this process, parallel processing was applied to 
handle all phases simultaneously. The resulting simulated patterns for each phase were saved in 
individual h5 files. 

2.4.2 Data preparation for machine learning model 
Data needs to be appropriately pre-processed to make it suitable for machine learning models. Here 
we outline the steps we take to prepare for training and test:  
1. Read the datasets (simulated diffractograms) from external files. 
2. Extract a subarray within a fixed 2θ (q) range and resolution to match and standardize all data.  
3. Fit and subtract the background using the AsLS method, and introduce scaled Poison noise. 
4. Shuffle the data to ensure randomness. 
5. Split dataset into train and test data. 
6. Normalize patterns for consistent scaling. 
7. Apply label encoding for classes. 
  
Outputs are four variables needed for the machine learning model, X_train, X_test, y_train, y_test. 

2.4.3 Convolutional Neural Network model 
We have chosen a Convolutional Neural Network (CNN) for our data training, as convolutional layers 
are well suited for capturing local patterns like peaks or free-peaks regions and hierarchies. The 
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model architecture comprises two 1D convolutional layers for feature extraction, two dense hidden 
layers to enhance learning capacity and an output dense layer for categorical predictions. 
To enhance the robustness of the model and prevent overfitting, we introduced MaxPooling layers 
to downsample the spatial dimensions and incorporated dropout layers throughout the training 
process. We systematically evaluate the evolution of training and validation loss and accuracy. We 
employed confusion matrices to assess the performance of the model.  
The entire model is implemented using TensorFlow/Keras. Details on the final architecture, 
including specific hyperparameters chosen, as well as on the simulated data, will be published and 
made available in the BIG-MAP GitHub. 

 
The Post-mortem analysis workflow use case focuses on reproducibility tests from cell assembly to 
data analysis. Our objective is the data analysis standardization of X-ray photoelectron 
spectroscopy, a surface technique particularly useful to study the SEI chemical composition on 
graphite electrodes upon cycling.    

 The scientific motivation 
X-ray photoelectron spectroscopy (XPS) is a surface technique that can be carried out at laboratories 
and synchrotron facilities. It is used to investigate the chemical composition of surfaces within the 
first 5 nm depth. XPS can probe the SEI composition of a battery cell electrode by revealing the 
chemical bonding of the SEI by-product’s nature and their semi-quantitative atomic percentage (see 
Annex 9.1 for more details). There is considerable understanding of the SEI on graphite electrode 
using carbonate-based electrolyte mixed with LiPF6 salt, thanks to XPS core level analyses of C 1s, O 
1s, F 1s, P 2p and Li 1s evolution upon lithiation/de-lithiation [16]. However, data analysis carried 
out on the same spectra recorded by the same equipment and treated by different XPS experts 
using different software is not well established and not well documented.  
We will focus here on the standardization of the XPS data analysis procedures. 

 XPS technique and data analysis 
The XPS spectra represent the number of photoemitted electrons per second scanned over the total 
kinetic energy spectra. Survey mode spectra, obtained at low resolution, allows the identification of 
core peaks and to obtain an initial overview of the sample’s chemical composition. Specific features 
such as asymmetric background emission can also be identified. High resolution spectra at individual 
core peaks are used for data analysis.  
In WP5, there are three partners that conducted XPS experiments: CEA, Uppsala (UU) and SOLEIL 
(synchrotron). Table 1 provides an overview of the XPS instruments, including their specifications 
and energy source. Different source energies have different penetration depth capabilities, 
producing complementary information across the surface layers. 
Various software packages, such as CasaXPS, XPSpeak, MultiPack, and AAnalyzer, can be employed 
for data analysis. In WP5, all three partners use the commercial CasaXPS software12.  
 

 
12 http://www.casaxps.com/ 
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Table 1. Overview of the instruments in WP5 that perform XPS/HAXPES measurements. 

 
Data analysis is done by peak fitting. It is subjected to several approximations related to the 
background subtracting methods, the selected base line shape and the mathematical function used 
to fit the spectra. Despite the fact that this approach is widely used (but not standardized), the 
physical background of different steps used in the treatment of spectra can strongly affect the 
qualitative and quantitative interpretation of the collected results, and thus the ultimate 
understanding of the SEI composition.  
 
Peak fitting is used to separate the intrinsic photoemission signal from different extrinsic 
photoemission related processes. This approach allows the identification of different constituent 
chemical states, facilitating comprehensive data interpretation. Prior to this process, a peak 
calibration is performed relatively to the Fermi level position of the sample. In general, the C 1s peak 
assigned to carbon contamination is used for this purpose. For a chemically heterogeneous surface, 
such as the SEI, it is usual to use the peak of the most representative chemical species measured. 
This process involves two main components: background and peak fitting, which are displayed in . 
 

 
Figure 11. Process for XPS data analysis. 

Partner Instrument Source Energy Probing depth Charge 
Neutralization 

CEA QUANTES (PHI) Al kα 1486.6 eV ~2-10 nm Available 
Cr kα 5414.8 eV ~5-20 nm 

UU PHI 5500 Al kα 1486.6 eV ~2-10 nm Available 
SOLEIL Galaxies beamline 

Scienta EW4000 
Synchrotron 2300 to 

12000 eV 
~ 10-50 nm Not available 
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XPS background emission is sample-dependent, it is mainly due to inelastic scattered electrons 
within the sample. It is often modeled with linear, Shirley and Tougaard functions13. The spectral 
range choice (trimming) to perform background fitting is also critical.  
For peak fitting, the first step is to determine the number of peaks, followed by the selection of a 
fitting function (e.g., pseudo-Voigt, true Voigt, or asymmetric function). Providing accurate initial 
values for, respectively, peak position, full-width-at-half-maximum (FWHM) and intensity is crucial 
for convergence. From a mathematical point of view, fit quality can be evaluated using metrics like 
root mean square (rms) or residual standard deviation (χ2), whereas from a chemical aspect, 
coherence of chemical structure must be highlighted by cross-linking information from 
corresponding core level peaks (for example, based on reference study, the LiF species has F 1s and 
Li 1s peak position at 685 and 56 eV, respectively). Additionally, a coherence in the stoichiometry 
must be respected through semi-quantitative analyses. Expert XPS users may validate results by 
comparing the fitted peaks with other expected peaks in the data. 
 
The results of the fitting model of each peak, position, peak and FWHM, give us the following 
information: 
1. Position – binding energy: elemental and chemical state of the atoms through binding energy 

shift. The XPS is the most direct non-destructive technique that allows chemical bonding 
identification within 0.5 eV resolution for a modern lab-based spectrometer.  

2. FWHM: information concerning the chemical state and the chemical and/or physical 
environment of the atom. Since the FWHM is the signature of photoexcited hole lifetime 
(Lorentzian distribution) and instrumental broadness (Gaussian distribution), the use of pseudo-
Voigt function is recommended to describe covalence bonding related peak signature.  

3. Peak intensity: amount of substance, i.e., quantitative information about the concentrations of 
the chemical states. Relative sensitivity factors (Scofield factors) are used to scale the measured 
peak areas so variations in the peak areas are representative of the amount of material in the 
sample surface. Nowadays relative sensitivity factors are available for Al and Mg X-ray based 
XPS. The increase of interest in lab-based HAXPES techniques is paving the way for building new 
relative sensitivity factors for high X-ray energy.  

 Implementation of data analysis standardization 
In order to inquire and ensure standardization of the XPS data analysis among our partners, a post-
mortem analysis in two stages was conducted. The first stage focused on the reproducibility of ex 
situ samples in WP5 laboratories, and it was developed during Tier 1 experiments. Preliminary 
results from this stage were inconclusive and thus a second stage was developed, integrated in the 
5.3 experimental workflow based on Tier 2 experiments. The following sections detail this two-
stages post-mortem analysis. 

3.3.1 Post-mortem analysis 1st stage - Tier 1 experiments  
During the Tier 1 experiments, we conducted a post-mortem analysis on reproducibility of ex situ 
samples in WP5 laboratories. This was introduced in the D5.5 deliverable (Section 2.5.2), and further 
discussed in the D5.3 deliverable (Section 2.1.2). To summarize: (1) Research partners prepare and 
cycle coin cells following BIG-MAP WP8 protocols. (2) Cells are sent to experimental partners. (3) 

 
13 Linear fitting is sample-independent, Shirley is based on the estimation of the inelastic scattering of electrons as they 
move through the solid state using the Shirley model, and Tougaard incorporates the concept of inelastic energy loss 
cross-sections to describe the background signal. 

      



 

Battery Interface Genome - Materials Acceleration Platform 
 

 

23 

Receiving partners perform uncoordinated measurements. (4) They also perform independent data 
analysis, using their preferred algorithms, software and protocols.  
We established a specific framework for XPS data acquisition and analysis, as illustrated in Figure 
12. For clarity, we chose to only focus on samples prepared at CTH. In this scheme, samples (aged 
cells with lithium and graphite as electrodes – Li//Gr – and graphite and LNO as electrodes – 
LNO//Gr) were sent to CEA, UU and SOLEIL. Every institution conducted measurements of the 
electrochemical data for the sample cells. There was no direct communication between receiving 
institutions or adherence to a specific protocol during the experimental phase, resulting in 
uncoordinated execution of the XPS experiments over a period of months. Additionally, the UU data 
were obtained using charge neutralization, which was not the case for CEA and SOLEIL data. 
Subsequently, data analysis was independently conducted at each institution by individuals 
possessing varying levels of expertise in XPS and/or batteries. 
We encountered challenges in reproducing the electrochemical data consistently, as well as poor 
reproducibility of the experimental results for cells that should be in exact conditions since they 
were assembled in the same laboratory. Moreover, when comparing the data analysis performed 
by the different partners, discrepancies arose in the identification of the SEI composition. We also 
identified some peaks resulting from cell exposure to air and/or water and other peaks from 
electrolyte contribution. 
 
Discrepancies can be attributed to multiple factors, including: 
- Variations in cell assembly and cycling conditions. 
- Differences in the timing of the XPS experiments. They were conducted at different time 

intervals after receiving the cells.  
- All samples were handled with basic precautionary measures, such as the use of a glove box for 

electrode storage and a transfer vessel to prevent air exposure. 
- The use of diverse data acquisition protocols (pass energy, use or not of charge neutralization).  
- The choice of data analysis software plays a minor role since software packages are based on 

the same algorithms for peak fitting.  
- Human factors can significantly influence the results. For instance, the expertise of the person 

analyzing the spectra plays a role in the observables. 
 
This initial analysis highlights the importance of establishing standardized protocols for both data 
acquisition and analysis in XPS experiments within the context of BIG-MAP.  Reducing errors caused  
by these various contributions is crucial. Within our WP, we have identified three key aspects that 
require attention to standardize XPS data analysis: 
• Cell contribution: Consistency in cell preparation and cycling is key. Electrodes should undergo 

uniform rinsing by a designated partner, and thorough documentation of cell production and 
aging processes is essential. 

• Experimental contribution: To enable comparisons between different partners, XPS 
measurements should be performed on cells with the same age which underwent the same 
cycling history.  

• Data analysis contribution: Adherence to specific protocols for data analysis is needed to ensure 
consistency and accuracy.  
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Figure 12. Organization and results for the post-mortem XPS data analysis performed during Tier 1 
experiments. Batches of Li//Gr and LNO//Gr cells prepared at CTH were sent to CEA, UU and SOLEIL, where 
independent experiments and data analysis were done. At the bottom, C 1s core level peaks and analysis 
comparison on three cells. The comparison of the results yielded inconclusive findings, standardizing 
experimental conditions and data analysis is necessary.   

Building upon the experience and results obtained from the Tier 1 experiments, a second approach 
was developed. The objective was to evaluate the cell manufacturing and experimental processes, 
and to find protocols for standardized XPS data analysis. This process was conducted within the 
framework of the 5.3 experimental workflow during Tier 2 experiments.  
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3.3.2 Post-mortem analysis 2nd stage - Tier 2 experiments under the 5.3 experimental workflow 
Tier 2 experiments were defined during the first semester of 2022 and launched in September 2022. 
All experiments in the 5.3 workflow were designed to use coin cells prepared by a unique provider 
using the same protocols. Figure 13 displays the specific workflow for the XPS data analysis (see 
D5.3 deliverable, Section 3 for more details in the experimental procedure). 
 

 
Figure 13. Scheme of the post-mortem XPS analysis carried out during Tier 2 experiments under the 5.3 
experimental workflow. Comparison of the raw data on graphite obtained at UU, CEA and SOLEIL show 
comparable findings. A round-robin analysis was done to perform and discuss data analysis. 

Details of the XPS workflow are the following: (1) Batches of LNO//Gr coin cells, with and without 
LiTDI as electrolyte additive, were prepared by FZJ (Dec 2022), following unique protocols for 
assembling, cycling, washing and handling. (2) Different samples were sent at the same time to the 
three partners:  UU, SOLEIL and CEA. (3) Partners performed coordinated XPS measurements, within 
a few weeks of receiving the samples. (4) Data is uploaded to the BIG-MAP archive. Information of 
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the experiments and metadata uploaded to the BIG-MAP Notebook when possible. (5) Expert XPS 
partners performed independent data analysis using their preferred tools, algorithms, software and 
protocols. (6) An in-person XPS data analysis workshop was held, during which a round-robin data 
analysis exercise was carried out to compare results and comment on XPS data analysis protocols. 
(7) Experts collaborated to analyze data analysis results and to establish protocols for XPS data 
analysis.  

3.3.3 Round-robin data analysis  
In June 2023, WP5 and other invited BIG-MAP colleagues met in Grenoble, France, to participate in 
an XPS data analysis workshop with the objective of training BIG-MAP scientists on XPS data analysis, 
while raising awareness about the need for standardization in data analysis. This was centered 
around a round-robin XPS data analysis, bringing together expert and non-experts on XPS, using the 
same software tools to analyze the same data simultaneously. Discussions focused on caveats, 
challenges and the needs to achieve standardization in XPS data analysis. A critical aspect in XPS 
data treatment is the quantification of elemental concentrations. The peak fitting model and the 
sensitivity factor has to be carefully evaluated for more accurate semi-quantitative analyses. 
Therefore, the second aspect of the round-robin analysis was to test the reproducibility of 
quantitative results from data treatment performed by experts from different laboratories.  
At the end of this section, building on these aforementioned exercises, we will provide XPS users 
with recommendations for XPS data standardization. 
 
 Participants 
Thirteen people participated in the XPS workshop, including three XPS experts who tutored the 
hands-on session and round-robin analysis. The list of participants can be found in Annex 9.3. 
 
 Data 
We used data from the 5.3 experimental workflow: XPS spectra recorded on a graphite electrode 
by CEA using Al Kα X-ray source, measured in both survey and high-resolution modes. Two samples 
were used, BM5-034 and BM5-037. These correspond to aged coin cells with and without LiTDI as 
electrolyte additive, respectively. For this practical session, we focused on the graphite electrodes. 
Data reference: https://archive.big-map.eu/records/cs4t5-e8823 
 
 Report form 
During the hands-on session of the workshop, participants were requested to complete a report 
form. They provided information on their background in XPS and battery chemistry and indicated 
their field of expertise. The report also collected information on the background and peak fitting, 
including selected background and fitting functions, statistics, and information on calibration and 
quantification. Participants recorded the results of the fitting for each core level: position in eV, 
FWHM in eV and peak intensity in counts/s. An example of the form is presented in Annex 9.3. 

 
 Minutes of the workshop 
1. Introduction to the XPS technique and data analysis. 
2. Participants downloaded datasets from the BIG-MAP archive. 
3. Inspection of the survey mode spectra: this revealed that the two samples share some peaks, 

while others are not shared. 
4. Tutors demonstrated how to use CasaXPS and explained the basic method for data analysis, 

including energy calibration, scale factor adjustment, background fitting and peak fitting. 

https://archive.big-map.eu/records/cs4t5-e8823
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5. Hands-on session, where participants worked alone or in pairs to analyze the high-resolution 
mode spectra and fill out the report form. 

6. Several handbooks and databases including a selection of review papers were available as 
support for all participants.   

7. Round-robin analysis, each participant or team presented their results, arguing their choices. 
8. Participants sent their fittings and reports to tutors for further analysis.  

Methodology 
This unique round-robin data analysis emphasizes the critical aspects of accurate peak fitting, from 
both mathematical and chemical perspectives.  
Herein, we present a comparative analysis of blind XPS data treatment results obtained by three 
participants having different backgrounds, labeled as Participant-A, -B and -C. Participant-A used 
linear background subtraction function while Participants-B and C used Shirley background (most 
used one in the literature). There were also differences in the chosen fitting function. Table 2 lists 
the main information for these participants. 
 
Table 2. Background of participants and general fitting information on exemplified participants to the XPS 
round robin analysis. 

  
All participants had two sets of XPS core level spectra of F 1s, C 1s, N 1s, O 1s, P 2p and Li 1s for 
graphite cycled with and without LiTDI based electrolyte used in BIG-MAP (LP57). To obtain accurate 
peak treatment, we use the F 1s and compare the results from the three participants from Table 2. 
Figure 14 displays the peaks fitted by the three participants. the three participants. 

Peak fitting comparison 
In the case of the F 1s spectrum recorded at the surface of graphite cycled without LiTDI, two distinct 
peaks are identified centered at 685 and 687 eV (see Figure 14) respectively assigned to LiF and PF6 
(LiPFyOz) groups. Considering only a mathematical perspective, it is indeed possible to use two peaks 
to fit the experimental data. All participants did so and accurately performed peak fitting. The only 
differences in the analysis methodology stem from the choice of fitting functions. For background 
treatment, some participants opted for a linear function instead of a Shirley function. For peak 
fitting, some participants chose asymmetric functions instead of the pseudo-Voigt one. While these 
choices do not significantly change the final interpretation in our example, they may impact the 
fitting in the case of metal-related core-level spectra where satellite structures are usually present 
near the main photoemission structure (herein indicating that the support of an XPS expert is 
mandatory for data analysis).    
 

 Participant-A Participant-B Participant-C Notes 
Knowledge on XPS 1 1 2 1 for low, 2 for medium, 3 for good 

Knowledge on 
battery chemistry 2 3 2 1 for low, 2 for medium, 3 for good 

Field of expertise Data Solid state 
chemistry 

Surface 
science 

Surface science, solid state 
chemistry, electrochemistry 

Background 
function Linear Shirley Shirley Linear, Shirley, Tougaard 

Fitting function Pseudo-Voigt Lorenztian 
Asymmetrical Pseudo-Voigt Pseudo-Voigt, asymmetric function, 

etc. 
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Figure 14. Comparison of the fitted F 1s core level for three chosen round-robin analysis participants. 

In the case of the cell with LiTDI (molecule containing CF3 group), the peak at 687 eV shows an 
asymmetry toward lower binding energy with a peak broadness, signature of both a CF3 related 
group in LiTDI and a PF6 group. In this case, differences in peak fitting were observed among all 
participants. This is a clear example highlighting how mathematical considerations are not sufficient 
to describe the experimental data. Only the battery expert group, Participant-C, used stoichiometric 
considerations using the information from P 2p and C 1s core level spectra. Indeed, the CF3 signature 
can be detected in C 1s (peak at 293 eV) and PF6 in P 2p (peak at 136 eV) spectra. Therefore, the 
best fit in this case is to consider simultaneously F 1s, P 2p and C 1s core level peak by taking into 
account peak position, stoichiometry ratio and FWHM values (Figure 14). In this case, the best XPS 
fit is always intimately related to the electrochemical process. In this particular case, the F 1s peak 
is the signature of salt or additive degradation by-products according to the following the 
electrochemical reactions: 

LiPF6  PF5 + LiF 
LiPF6 + Li2CO3  3LiF + POF3 + CO2 
PF5 + Li2CO3  2LiF + POF3 + CO2 

 
The presence of F 1s peaks at 685 and 687 eV, and P 2p peaks at 133 and 136 eV, are the signatures 
of the by-products resulting from the reaction path above. Herein demonstrating that further 
physic-based knowledge is needed to fine-tune the purely mathematical spectra peak fitting.  

Conclusions and final recommendation for XPS data standardization 
In this original round-robin study, we highlighted the importance of respecting specific protocols at 
each stage of the analysis to achieve the most accurate peak fitting. These stages include peak 
calibration, background subtraction, peak profile distribution, number of peaks, and FWHM, peak 
position and peak intensity evaluation. The most critical challenges occur when dealing with 
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asymmetric peaks with a FWHM larger than 3 eV. In such cases, cross-linking information from 
different peaks proves to be the most effective approach for building a fit that provides insights into 
the true surface chemical distribution. 
It is evident that building an XPS peak fitting database would significantly enhance the accuracy of 
peak fitting, particularly in the context of complex battery chemistry.  This would therefore form an 
important objective for future projects. 
The results of the round-robin analysis will be presented in a forthcoming publication, providing 
additional information in terms of quantification and further depth and insights into the implications 
of our research.  

 

 The scientific motivation 
Raman and Fourier Transform Infrared (FTIR) are commonly employed, complementary vibrational 
spectroscopy techniques. They are used to probe vibrational excitations of the sample and provide 
unique structural fingerprints for molecule identification (see Annex 9.1 for more details). Raman is 
widely used for bulk and near-surface operando characterization of battery materials - covering 
anode/electrolyte and cathode/electrolyte interactions. FTIR is mostly used to probe the electrolyte 
solvation structure and speciation, as well as electrode/electrolyte interfaces.  
The surface sensitivity of both Raman and FTIR can be enhanced with specific strategies [17]. During 
Tier 1 experiments, we explored them for the attenuated total reflection IR, performed at CTH, and 
for the diffuse reflectance FT spectroscopy, performed at ICMAB, to identify the SEI on cycled 
graphite electrodes. However, it was recognized during these Tier 1 experiments that the sensitivity 
of the techniques was insufficient to probe the SEI formed on graphite electrodes after the 
formation cycles. Thus, for Tier 2 experiments, we focused on vibrational spectroscopies for the 
analysis of LNO//Gr cell bulk properties.  

 Raman and FTIR in experimental workflow 
Figure 15 displays the vibrational spectroscopies from LP57 electrolyte (1M LiPF6 in EC:EMC 3.7 
wt%), as well as LNO and graphite electrodes. Panel a) in the figure shows the Raman and FTIR 
spectra of LP57, where characteristic vibrations, such as C-H and C=O stretching modes, EC ring 
breathing and P-F stretching of PF6- anion are highlighted. Panel b) gives the Raman spectrum of 
LNO and its two characteristic vibrational modes are identified: the stretching (Eg) and bending (A1g) 
modes. Panel c) shows the spectrum of the BIG-MAP composite graphite electrode (graphite active 
material mixed with high surface disordered carbon conductive additive) provided by CID. This 
spectrum profile consists of 5 peaks: G, D1(D), D2, D3 and D4, where the G band is characteristic of 
the in-plane bond-stretching of pairs from C sp2 atoms. D1 and D2 are attributed to the vibration 
mode of disordered graphitic lattice (A1g and E2g symmetry). D3 and D4 are linked to the presence 
of amorphous carbon, while D4 is also related to the presence of C-H termination group [18-22]. 
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Figure 15. Vibrational spectroscopies of BIG-MAP materials: a) FTIR and Raman spectra of LP57 electrolyte; 
b) Raman spectrum of LNO; c) Raman spectrum, with its deconvolution, of the graphite composite 
electrode from CID. Spectra were measured at CTH. 

 Implementation of data analysis standardization 
Similar to other spectroscopic techniques, the analysis of Raman and FTIR spectra consists of three 
steps: trimming, baseline subtraction and peak fitting (shown schematically in Figure 16). The 
implementation of each of these steps can give a slightly different output depending on the 
employed processing software and user expertise. The accumulation of small deviations during each 
processing step may result in different final outputs. In order to achieve the most reliable and 
reproducible data analysis it is therefore essential to define standards and protocols for individual 
processing steps, including employing the same processing. For this purpose, a collaboration 
between WP5 and WP9 has been crucial and has resulted in the development of the PRISMA 
software, which is particularly useful for both standardization and automation of vibrational spectral 
data analysis. 
 

 

Figure 16. The three steps of spectral analysis: trimming, baseline fitting and subtraction, and peak fitting. 
Extracted from Flores et al. [4]. 
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Step 1. Data trimming. Experimental Raman and FTIR data are typically recorded within a wide 
wavenumber range, typically spanning from 0 to 4000 cm-1. While keeping a complete wavenumber 
dataset is important for future data analysis, the spectra should be limited to the specific 
wavenumber range of interest before performing background subtraction and peak fitting. The best 
results are achieved through data trimming, ensuring that only relevant peaks are included, along 
with additional wavenumber intervals (both at lower and higher values) relative to the peaks of 
interest to facilitate accurate background estimation. Including wider wavenumber interval may 
lead to a less accurate background estimation due to the non-uniformity of the background across 
the entire spectrum. Conversely, trimming too close to the peaks of interest may incorporate part 
of the peak tales into the background contribution, thus altering the peak profile. Optimal data 
trimming requires visual assessment, however, a range of +/- 100 to 200 cm-1 framing both sides of 
the peaks of interest is typically sufficient for accurate data analysis and interpretation. Examples of 
appropriate data trimming are shown in Figure 15 b) and c). 

Step 2. Background subtraction. Background removal is a very important step in vibrational data 
analysis; that can only be correctly achieved on appropriately trimmed data (step 1) and is essential 
for accurate peak fitting (step 3). While there are numerous methods and software available for 
background subtraction, the AsLS methods was chosen within the BIG-MAP project (see Section 
2.2.2) due to its simplicity of use and rapid computation performance (the last being a key factor for 
high-throughput analysis). We follow the same workflow as for XRD data (Section 2.2.2), by tuning 
the p and λ parameters. 

Step 3. Peak fitting. Finally, the peak fitting provides the most valuable information pertaining to 
material structure and composition. The number of fitted peaks must be equal to the number of 
Raman or IR active bands in the spectrum. The extracted information from peak fitting is: peak 
positions, peak intensities and FWHM (later referred as width). In turn, peak positions give 
information regarding the chemical bonds in the sample, intensities provide material quantification 
and insights into polarizability/dipole moment and, lastly, peak profile and width are related to the 
sample crystallinity/disorder. The peak profiles included in PRISMA describe the most common 
bands, which are either naturally (Lorentzian), partially (pseudo-Voight) or heavily (Gaussian) 
broadened by the measurement conditions [23, 24]. 

To perform the peak fitting using PRISMA, the user must indicate the number of peaks, the fitting 
function, the lower and higher bound for each of the peak positions and the maximum peak width. 
The code then fits the complete spectrum as a sum of peak profiles using the Trust Region Reflective 
Algorithm as implemented in the SciPy package [25]. By applying the above-mentioned process, 
PRISMA-assisted peak fitting ensures a high degree of data analysis standardization.  

 Implementation of data analysis automation 
As demonstrated, PRISMA is a powerful tool for analysing vibrational spectroscopy data. In addition 
to individual spectral analysis, PRISMA offers automated data analysis for a series of dependent 
spectra, i.e., spectra with the same set parameters for trimming, background subtraction and peak 
fitting, through a customized Python script that is used through its GUI. The spectra as a function of 
a perturbation variable (e.g., time, temperature, coordinate, etc.) are provided as an input variable 
to the script. Trimming, background and peak profile parameters are manually optimized for a 
representative number of spectra and then fixed for all the datasets. Specifically, background 
subtraction is performed using an AsLS function with fixed parameters p and λ, while the number 
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of peaks is defined by the user from the expected composition and chemical nature of the sample. 
Each spectrum is automatically fitted with the same selected parameters. Chi-square was used as a 
metric to assess the fit quality. Processed spectra and peak parameters (position, width and 
intensity) as a function of the perturbation variable are recorded in an output file. 

The typical workflow when using PRISMA to analyse a sequence of dependent patterns is the 
following: 
1. Selecting a pipeline, that is, a pre-defined recipe of spectrum processing steps. 
2. Upload of the input pattern file(s). PRISMA offers three parsers able to load patterns in specific 

formats: several individual .txt files, a single .txt file, and a single .csv file.  
3. Selection of a spectrum for visualization.  
4. Tuning the processing parameters until reaching a visually satisfactory fit. For baseline 

correction, the parameters are the trimming interval and the λ and p parameters of the fit; for 
peak fitting these are the number of peak profiles, their bounding neighbourhood, and a 
maximum width limit. 

5. Inspection to verify whether the parameters enable satisfactory fits of other patterns or if they 
need further tuning. 

6. Iteration between steps 4 and 5 by selecting multiple patterns and visually inspecting the results, 
until finding satisfactory parameters that apply to most patterns. 

7. Running a high-throughput processing of all patterns with the chosen parameters. 
8. Downloading the results for further analysis and plotting. 
 
As part of the development and evaluation of the PRISMA software, two Raman use cases were 
chosen: Raman spectroscopy on ethylene carbonate (EC) monitored during its melting transition 
and Raman mapping of a composite graphite electrode. Here we summarize the main results, which 
are published in Flores et al. [4]. In the first case, the temperature-dependent spectra were 
processed with PRISMA, where baseline correction and peak fitting were performed. The resulting 
peak positions and intensities as a function of temperature provided valuable insights into the 
structural rearrangement of EC upon melting. For the second example, Raman mapping analysis of 
graphite and carbon additive distributions in a composite graphite electrode, PRISMA multi-peak 
fitting model assessed chemical heterogeneities, graphitic regions, and the presence of both 
disordered and amorphous carbon. The subsequent analysis demonstrated the value of studying 
peak trends instead of raw spectra, and PRISMA's interface facilitated analysis parameter tuning 
and results visualization. 

Operando Raman of LNO cathode. After the success of these two use cases mentioned above, 
PRISMA was used to perform automated operando Raman peak analysis of LNO, focusing on fitting 
the Ni-O stretching (A1g) and Ni-O-Ni bending (Eg) bands (see Figure 17) during charge and discharge 
cycles. The fitting process provided valuable peak parameters, including peak positions, widths and 
intensities. The data analysis provides insights on the evolution of the Eg and A1g bands during 
cycling, contributing to the understanding of the behavior and transitions of LNO and other Ni-rich 
materials. This work will be soon published as a result of an inter-WP collaboration. 
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Figure 17. a) Operando Raman spectra of LNO during first charge-discharge cycle. b) output results of two 
peak PRISMA assisted fittings: A1g and Eg bands positions, intensities, and widths evolution as a function 
of the lithiation degree. 

 Implementation of data analysis correlation with modelling 
Data analysis correlations between experimental and computational data are important to validate 
the theoretical models. This implies the selection of common measurable/computable sample 
properties. Then, theoretical models impacting this property can be developed, and experiments 
can be carried out to establish this correlation. 
A successful BIG-MAP collaboration has been established between partners from CTH, WWU and 
FZJ to cross-correlate molecular dynamics simulations performed in WP3 with experimental results 
from WP5. This work has been recently published in Maiti et al. [26]. 
 
Sample: Two Li-ion battery electrolytes: 1M (and 2M) LiPF6 in EC:EMC 3:7 wt% (LP57) 
Sample property to correlate: Coordination numbers (CNs) 
Theoretical models: Molecular dynamics (MD) simulations 
Experimental data: FTIR 
 
MD simulations were performed using three force fields: polarizable force field (APPLE&P model), 
standard non-polarizable force field without charge rescaling (standard OPLS model), and standard 
non-polarizable force field with charge rescaling (charge rescaling model). They were compared for 
their efficiency to model the structural properties of two Li-ion battery electrolytes. Specifically, 
electrolyte solvents and anion coordination statistics with respect to the electrolyte cation were 
calculated and compared to the experimental values obtained from FTIR spectra. 
Experimental FTIR data was processed with PRISMA to extract the main observables. Figure 18 a) 
and b) displays the data and peak fitting. The FTIR spectra have a characteristic P-F bond stretching 
mode at 838 cm-1 and an EMC peak at around 873 cm-1. The increase in LiPF6 concentration results 
in an increase of the two shoulders centered around 820 and 860 cm-1 (both blue- and red-shifted 
as compared to free PF6- peak), that have been attributed to the presence of Li+–PF6- ion 
pairs/aggregates [27-30]. The specific CNs of Li-ions around fluorine of PF6- ions were calculated for 
two salt concentrations, according to the formula CN = AC/(AF + AC), where AF is the peak area of 
free PF6-, and Ac the peak area of PF6- coordinated to Li+ ion pairs. The CN values extracted from 
experiments and MD simulations are shown in the table in Figure 18 c). We find that there is a very 
good agreement with the polarizable force field model. By contrast, the OPLS force field 
underestimates the cation–anion pair formation. It is notable that, after charge rescaling of the 
OPLS force field model, the structural agreement becomes even poorer. 
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Figure 18. Correlation between FTIR experimental spectra and MD simulation. FTIR spectra of P–F 
stretching regions of a) 1 M LiPF6 in EC : EMC 3 : 7 wt% (LP57) and b) 2 M LiPF6 in EC : EMC 3 : 7 wt% 
electrolyte and corresponding peak fitting. c) Comparison of coordination numbers of Li+ cation with PF6

- 

anion. The compositions are slightly different in simulation (EC : EMC = 24 : 76) from experiment (EC :
EMC = 30 : 70). Adapted from Maiti et al. [26]. 

This example showcases the importance of validating theoretical models with high fidelity 
experimental results processed through appropriate analytical software. 

 

 
Here we outline an automated approach to big data analysis using, as an example, results obtained 
by ex situ and operando X-ray tomography. 

 Motivation and segmentation for imaging data 
In general, battery electrodes have a complex 3D microstructure, with a near-random spatial 
organization, which in turn effects their operational properties. Moreover, during cycling, dynamic 
changes occur in the material’s microstructure. These changes can be investigated with non-
destructive 3D imaging techniques, such as X-ray tomography, which produce large experimental 
datasets at each acquisition/time-step to obtain final 3D volumetric reconstructions with sufficiently 
high resolution. 
Standard 2D images are composed of an array of unit elements, the pixels. Similarly, 3D volumes 
are composed of regular cubic elementary volumes called voxels. In a raw 3D volume obtained 
through tomography, each voxel has a value which can be linked to a material in the sample. 
Segmentation is the process of attributing a phase to each voxel in the raw volume. This can be a 
rather complicated process depending on the imaged materials, the acquisition resolution, image 
quality and the fidelity expected in the analysis. Quantitative analysis requires the segmentation to 
be precise as this strongly influences the ultimate analysis precision and fidelity. Thus, segmentation 
of tomographic datasets for quantitative analysis is then a long and challenging process. 
For complex microstructures, standard segmentation algorithms tend to fall short when aiming for 
the highest fidelity; machine learning models can then be investigated to improve this. Best results 
seem to come from either highly specific algorithms or U-Net [31] like based CNNs, both of which 
are very time consuming, human intensive and require specific setups. When considering the 
training of CNNs for segmentation, image annotation is the most time consuming and human 
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intensive step as it has to be done manually. In order to minimize the bottleneck nature of this step, 
we developed, in collaboration with WP11 and DTU (L. Rieger), a segmentation tool making use of 
active learning during the training section in order to optimize the human time allocated to manual 
annotation. 

 Method description 
Usually, U-Net models for segmentation require a certain amount of annotated data for a complete 
training. For one 3D volume from X-ray tomography (with dimensions of 2048x2048x2048 voxels), 
between 5 to 10 full slices of the volume (i.e., 5 to 10 2048x2048 images) must be manually 
annotated. Depending on the user and complexity of the material/sample, this can take several 
days. Designing our segmentation tool, we chose a lighter strategy for the initial annotated training 
input by partially annotating full slices from the volume (also between 5 to 10). This process takes 
between 1 to 3 hours. Once this step is completed, the model hyper parameters are set and the 
training is started.  
During training, the model checks the metrics (validation score) after a fixed (parametrized) number 
of epochs. If the validation score does not improve on the last few epochs, the training process 
stops. Once this initial training step is completed, the network examines an unannotated pool of 
patches from slices (typically the whole volume or a subset thereof) and identifies the most suitable 
patches to add to the training dataset. Then, a predefined number of patches is outputted by the 
network, including both predictions and input images. These patches are meant to be manually 
reannotated for the training to continue. A portion of this new training data is automatically used 
for training and another for validation. These patches are also automatically removed from the 
unannotated pool. This annotation step needs to be thorough, performed on the entire patches 
which are usually encompassing complex areas. Patches are significantly smaller than the full slice, 
thus the annotation process is relatively fast, up to 1 h on 5 patches. Additionally, speeding up the 
manual annotations are the network predictions, they serve as a starting point that only requires 
correction rather than starting from scratch. Once the new patches have been reannotated, the 
training can resume, following the same previously mentioned workflow, i.e., requesting user 
annotation for a new set of patches when necessary. This process can be repeated until the user is 
satisfied with the outputs provided by the network or until the global total number of epochs 
allowed for training is reached. Either way, the full volume segmentation can then be performed. 
Figure 19 illustrates the schematic view of this segmentation tool. 
 

 
Figure 19. Schematic view of the active learning accelerated training process proposed with the new 
segmentation tool developed in BIG-MAP. Orange pen markers are identifying the two manual annotation 
parts of the workflow. The blue graduation cap indicates where the learning is made for the network in 
the active learning loop. 
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 Practicalities and tool availability 
This tool was developed using Python and the PyTorch module through scripts without GUI. For the 
work performed in BIG-MAP, the Krita14 software was used to make the manual annotations. Krita 
is a free, open source software designed for digital painting, that can be scripted using Python. 
Additional scripts and plugins were developed to help the import/export process between the 
network environment and the Krita working environment. Any alternative software can be used as 
long as it has (1) the capabilities to load the network outputs, (2) annotation can be performed using 
a pen tablet and (3) that its outputs are compatible with the network input format. 
At the moment of redaction of this report, this is work in progress. While a functional prototype of 
the entire process has been achieved, we are now focusing on the tool optimization and stability. A 
publication is in preparation and the source code for the active learning segmentation tool will be 
published on GitHub. The different scripts and plugins used to include Krita in the manual 
segmentation process will also be made available on GitHub at the same time. The code publication 
will also be accompanied by a tutorial.  

 
 
Our data analysis work on the multi-structure, multi-scale characterization data allows us to identify 
guidelines for data analysis standardization and automation.  

 Data analysis standardization guidelines 
Data analysis standardization of characterization techniques can be achieved by following defined 
protocols and workflows. Figure 20 displays a step-by-step guide to follow to formulate and 
implement protocols for data analysis standardization. 
 

Figure 20. Scheme illustrating protocols for data analysis standardization. 

After selecting the characterization technique for standardization, it is essential to identify existing 
standards and protocols while analyzing gaps. Based on this, we can develop a protocol framework 
outlining the steps to be followed for data analysis and reporting. Key performance indicators for 
the protocol, such as accuracy, precision, and reproducibility, need to be identified. Subsequently, 

 
14 Krita: https://krita.org/en/ 
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a draft protocol with detailed data analysis instructions can be created, tested on a small dataset, 
refined based on feedback, and finalized. Regular monitoring and protocol updates are also 
necessary to adapt to evolving characterization techniques. 

 Data analysis automation guidelines 
Figure 21 displays our proposed step-by-step guide to automate data analysis. 
 

Figure 21. Scheme illustrating protocols for data analysis automation. 

We start by identifying data analysis tasks for automation (e.g., data pre-processing, data fitting, 
feature extraction and formatting). We then select suitable tools and algorithms for each task, e.g., 
Python has many specific libraries to handle datasets and perform analysis. Scripts or workflows to 
automate analysis tasks will be developed and validated against manual analysis or existing 
benchmarks to ensure accuracy and reliability. Next steps are to implement the proposed 
automation protocol and monitor its performance over time, enabling the user to produce updates 
with evolving data and techniques. 

 
 
Advancements in battery characterization technologies have generated increasingly diverse and 
complex datasets, often with significantly large volumes. This situation characterizes what is 
commonly referred to as "big data". Traditional processing techniques are often insufficient, as they 
result in slower processing and analysis. Hence the need for flexible software tools for analysis, 
deploying novel methods and algorithms to extract valuable insights [32].  
In our team, we labeled big data as voluminous data sets that cannot be handled individually, with 
diverse data types (structured, semi-structured, and unstructured), often generated at high speed.  
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Big data in science and in WP5 
The significance of big data in science originates from the continuous evolution of science, marked 
by significant advancements in scientific instruments and simulations that generate large volumes 
of data. Big data allows to conduct comprehensive data exploration, investigating large and diverse 
datasets to unveil patterns and correlations that were previously inaccessible. Fundamentally, this 
will improve and accelerate R&D by the development of automation of data processing, analysis 
and visualization, streamlining workflows and delivering faster, innovative results. Big data also 
promotes the principles of data FAIRness (Findable, Accessible, Interoperable, and Reusable) [33], 
fostering reproducibility and transparency in scientific research.  
In WP5, we have identified various techniques that generate big data. These include neutron 
tomography (conducted at ILL by CEA), X-ray tomography (performed at ESRF by CEA and CTH), and 
operando experiments on NPD (at ILL) and XRD (at DTU and ESRF). Imaging and tomography 
techniques produce large volume datasets, while operando experiments for battery cycling 
generate hundreds or thousands of files. Some of this data originates from LSFs, where appropriate 
servers exist to store both raw and processed data. Other data is generated at laboratories, typically 
comprising a large number of spectra files that are produced at high speed during operando 
characterization experiments. These files can be stored on local laboratory PCs and uploaded to the 
BIG-MAP Archive. 

Data analysis workshop: learning best practices for data analysis and big data 
On June 16th, 2023, we conducted a workshop on big data handling and analysis in WP5. This 
workshop helped scientists to identify whether they are dealing with big data, enhancing their 
awareness of the challenges associated with working on big data projects, understanding the 
significance of ensuring data FAIRness and receiving guidance on achieving FAIRness with their own 
data. Furthermore, a key objective during the meeting was to discuss procedures for data 
exploitation in the context of big data, including handling and managing bad data. See Annex 9.4 for 
the participants list. The agenda of the workshop is listed below. 
• Presentation by C. Herrera (ILL): Introduction on big data and impact on (your) science. 
• Presentation by V. Favre-Nicolin (ESRF, head of algorithms and scientific data analysis group): 

From big to FAIR data. An overview of how LSFs (such as ESRF) handle and process big data 
within the FAIRness framework. 

• Presentation by J. Flowers & S. Fuchs (KIT) from WP10: Lessons in data management and 
automated data analysis. An overview of how laboratories like KIT manage big data and perform 
automated data analysis from spectroscopic characterization techniques. 

• BIG-MAP's ultimate goal is 
to develop an R&D 
infrastructure based on an 
AI-accelerated 
methodology.

• Characterization 
techniques generate big 
data critical to achieving 
this goal.

Value within 
BIG-MAP

• Use the BIG-MAP achive to 
store and share the data.

• Ensure interoperability to 
enable the inclusion of AI 
methodologies and 
machine learning.

• Develop standardized and 
automated analysis tools.

Methods

• Managing large volumes of 
data (storage and handling). 

• Monitoring, identifying, 
and fixing quality issues in 
the raw data.

• Making laboratory 
techniques FAIR. 

• Ensuring data 
interoperability 

Challenges

• Experimental and theory 
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• Presentation and tutorial by S. Clark (SINTEF), WP7 lead: Linked data principles and practical 
applications. 

o Practical strategies to make your data FAIR.  
o Introductory demo: methodology for ontologized metadata using a specific case study. 
o Practical tools for creating and exploring ontologized metadata for your data. 
o Walk through of a hands-on example of creating, posting, and re-using data/metadata. 

• All: WP5 discussion centered around enhancing pipelines and workflows to optimize data 
processing and analysis, specifically addressing exploitation procedures for big data/bad data 
handling and management. An important takeaway from the discussion was that scientists could 
greatly benefit from centralized online access to a repository of examples, tips and tutorials on 
how to handle and analysis big data. 

 Best practices to handle big data and bad data 
Discussions during the data analysis workshop were highly productive and insightful and, from these 
we defined best practices for handling both big data and bad data in WP5. Two essential approaches 
need to be considered: data organization and data processing. In the following, we elaborate on 
these approaches and how to effectively implement them. 

7.1.1 Data organization 
Data organization is a fundamental task in general data analysis, regardless of the data type and 
size. It is essential for understanding the data and thus work efficiently. Figure 22 displays the seven 
steps we followed to effectively organize and handle the data. 
 

Figure 22. Scheme illustrating best practices for data organization and handling. 

Firstly, maintain a well-defined and consistent data and file structure: consider using a hierarchical 
folder structure to categorize and store different types of data. Secondly, develop a naming 
convention for files and folders, ensuring consistency and descriptiveness, and use acquisition dates 
for experimental data folders. Next, keep raw, pre-processed, processed and analyzed data in 
separate folders to track the data evolution and prevent any confusion or accidental overwriting. 
Additionally, incorporate metadata to your data, providing information about sample details and 
pre-processing steps to aid data discovery and understanding. A further step can be considered by 
ontologizing metadata following ontologies provided in WP7. Also, documenting workflows by 
keeping record of the steps and procedures followed during data processing is key to reproduce 
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results and troubleshoot any issues that may arise. Consider also implementing version control using 
software like Git to track versions and facilitate collaboration with colleagues. And lastly, regular 
data backups are advised to prevent data loss using institutional servers, hard drives or cloud-based 
services. It may be helpful to set automatic synchronization routines for specific directories, e.g., by 
using rsync -avz /path/to/local/folder/ username@remote_server:/path/to/remote/folder/ on 
Unix systems. Scheduling systematic synchronization tasks can be also implemented in Unix-like 
operating system with cron jobs.  
In Section 7.1.3, we introduce a collaborative webpage where examples on data organization can 
be found. 

7.1.2 Data processing 
The way of processing and analyzing data has to be adjusted to the type of data. Here, we discuss 
three aspects for efficiently handling both big data and poor-quality (bad) data. 
 
a. Scripting and optimizing scripts 
In the context of big data analysis, scripting using common languages such as Python (which comes 
with many helpful libraries) is indispensable. When dealing with numerous datasets, a scripted 
algorithm can automatically be applied to all datasets, saving time and ensuring analysis 
consistency. Modifications to these algorithms can be easily done, making it efficient to adapt to 
changing data requirements. Every step in the process is documented, creating a strong framework 
that can be easily used with different datasets. In the following, we discuss three optimization 
aspects, for which Section 7.1.3 provides information on examples illustrating these approaches. 
 

i. Parallel processing for uncorrelated data 
One key strategy to optimize scripts is to use parallel processing, which consists in breaking 
down large datasets into smaller, more manageable batches that can be dealt with at the same 
time using the same algorithms. This approach significantly enhances processing speed and 
overall efficiency, allowing for quicker insights into the data. Parallel processing is most effective 
when applied to independent or loosely correlated datasets. Indeed, interdependencies 
between data elements require coordination and synchronization among the processing units 
which can potentially negate the performance gains that parallel processing typically provides. 
There exists a range of libraries and tools for parallel processing, providing the necessary 
infrastructure to distribute tasks across multiple processors or even clusters of machines, 
maximizing computational power and reducing processing times. One of the most used in 
Python is multiprocessing.  
 

ii. Object-Oriented Programming (OOP) 
The main idea in OOP is to organize the code by creating objects, that may represent different 
data structures or processing steps, which can have different attributes (data) and methods 
(functions). For instance, one can create objects to do specific actions such as load data, clean 
data or run analysis. Codes are then organized, easy to understand, and can be easily reusable. 

 
iii. Identifying bad data 

Identifying and handling bad data is a crucial consideration when dealing with big data. This 
identification depends on the specific technique and data type in use. We first need to define 
what we consider as bad data for any specific technique. For instance, raw neutron imaging and 
tomographic techniques often contain a certain number of white pixels, which may be due to 
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scintillator/detector aging, cosmic ray interference, etc. Data visualization is one approach to 
identify problematic data, but it can be impractical when dealing with a large volume of data 
points. Statistical methods come to the forefront in such scenarios. In the case of imaging and 
tomography, software packages employ various algorithms to effectively clean data from 
artifacts and reduce noise. 

 
b. Analytic techniques 
Various analytic techniques, including statistical analysis, data mining, and machine learning, can be 
used to extract valuable insights and patterns from big data. Here, we provide some examples of 
these three approaches to analyze big data. 
 

i. Statistical analysis 
Statistical models offer numerous avenues for extracting meaningful information from big data 
sets. Descriptive statistics, such as means, medians, variances, and standard deviations, provide 
a comprehensive overview of the data characteristics. Basic correlation analysis, both linear and 
nonlinear, using parameters such as the Pearson correlation coefficient, helps uncover 
relationships within the data. Furthermore, techniques like Principal Component Analysis (PCA) 
are used to reduce datasets complexity by lowering dimensionality. Bayesian models are also 
useful for estimating probabilities and assessing uncertainty. The Kolmorogov-Smirnov test 
proves useful in determining whether two datasets come from the same underlying distribution. 

 
ii. Data mining 

Data mining refers to the discovery of patterns or associations within large datasets, with the 
goal of extracting useful information for decision-making or anomaly detection. This is done by 
using techniques such as clustering, which groups similar data points (e.g., using K-Means 
models), discovering unknown relationships between variables, finding unusual patterns, 
among others. 

 
iii. Machine Learning 

Machine learning offers a wide range of possibilities for leveraging data efficiently, representing 
a rapidly evolving field. The core concept involves developing algorithms and models capable of 
learning from existing data to make predictions. Models can be based on supervised learning 
(training data is labeled), unsupervised learning (e.g., clustering methods) and reinforcement 
learning. Machine learning models find application in image recognition (e.g., Section 5 for 
imaging segmentation), classification of spectral data (e.g., Section 2.4), and more. A significant 
challenge in this domain lies in the creation of large databases essential for training these 
models. Building robust training datasets is crucial to the success of machine learning 
applications, enabling the models to make accurate predictions. 

 
c. Data Integration 
While sophisticated algorithms help uncover patterns, correlation, anomalies and predictions, data 
integration is a critical step in the workflow of data processing, especially when dealing with big data 
from diverse probes. It involves consolidating data from diverse sources into a unified format, 
allowing comprehensive analysis and correlation across different data types. This process includes 
identifying relevant sources and formats, transforming and cleaning data for consistency, and 
ensuring data quality. Having a well-defined data organization and structure ensures uniformity. 
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Also, metadata should be comprehensive, documenting data origin and transformation processes. 
Data should as well be easily accessed, allowing for smooth collaboration.  

7.1.3 Collaborative webpage 
Handling and analyzing data are key in scientific research. Often, scientists tend to focus on their 
own methodologies and data analysis techniques, and many are not specially trained to tackle the 
significant challenges that big data analysis can present. However, openly collaborating on 
methodologies for data handling and analysis with peers from diverse technical and scientific 
background is beneficial for everyone. With this vision in mind, we have created a collaborative 
webpage where scientists can explore best practices and guidelines related to data organization and 
processing (listed in this section), with access to examples and/or tutorials, and have the 
opportunity to start new topics and ask questions. Figure 23 presents screenshots from the web 
page. 
The webpage is hosted on GitHub Pages, thus encouraging active participation. GitHub link: 
https://cnherrera.github.io/bigdata.html 
 

   
Figure 23. Visual overview from the collaborative web page, showcasing examples, practical tips and best 
practices. 

 Data exploitation procedure for big data/bad data handling 
Following our discussion on the data exploitation procedure for handling big data in the context of 
battery characterization data, we have outlined an approach for efficient analysis.  

 

Efficient data organization and storage to ensure 
accessibility and data integrity.  
 

Data exploitation and analysis.  
 

Step 
1

Step 
2

Step 
3

Step 
4

Step 
5

Preprocess data to 
ensure data quality.  

Quality assessment to identify and handle 
bad data points or outliers.  
 

Data visualization in a 
meaningful way to gain insights 
and guide analysis  
 

https://cnherrera.github.io/bigdata.html
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In the first step, the use of a robust data management system, handled by WP9 with the BIG-MAP 
archive, to efficiently organize and store data, focusing on ensuring accessibility and data integrity. 
A collective effort is asked to all characterization researchers to upload data in a standardized BIG-
MAP format, together with metadata for interoperability. Next, data preprocessing is essential to 
ensure data quality, including noise removal, artifact correction, and data normalization. In step 
three, the data exploration and visualization phase must consider the technique-dependent nature 
of data to achieve meaningful visualization to gain insights and to prepare subsequent analyses. 
Step four focuses on quality assessments, especially to address bad data, combining statistical 
analysis, data profiling, and technique-specific checks to pinpoint bad data points or outliers. 
Thresholds are defined to identify bad data and implement methods such as data imputation, 
filtering, or removal to handle this data. Finally, once data quality is ensured, we proceed to data 
exploitation and analysis. This encompasses a wide spectrum of analytical techniques, including 
statistical modeling, machine learning, and advanced data mining or data-driven modeling 
approaches. 
In summary, this data exploitation procedure is designed to manage and analyze battery 
characterization data, emphasizing data quality, visualization, and a range of analytical techniques. 

 Ontologizing metadata 
As crucial as the data itself, metadata plays a pivotal role in data analysis. Metadata provides the 
context necessary for a comprehensive and universal understanding of the data. In the context of 
FAIR principles for experimental data, many raw datasets already contain fundamental metadata 
related to the experimental acquisition. However, these metadata often lack critical details required 
for a comprehensive understanding of the experimental conditions and the probed sample. One 
significant challenge lies in the fact that different techniques may use varying terminology to 
describe the same aspects or employ identical keywords to define different attributes. This 
discrepancy presents a significant obstacle when attempting to establish connections between 
different datasets and having homogeneous datasets. Hence, the incorporation of ontologies into 
metadata becomes imperative to facilitate effective data linkage and comprehension. 
 
Efforts to standardize metadata in materials characterization are ongoing. Under the OYSTER 
project, Romanos et. al. [34] have proposed CHADA, a new documentation structure for 
characterization data. It establishes protocols for multi-technique, multi-scale materials 
characterization and tools for data sharing, ontologies and standardized data documentation. 
CHADA describes four key concepts in the characterization workflow, (1) use case, with information 
of the testing environment, e.g., sample; (2) experiment, including process by which the 
methodological workflow is defined: probe, detector, signal, noise, etc.; (3) raw data, defined as a 
set of data provided directly as output by the experiment, typically in function of time, position, 
energy, etc.; and (4) data processing, identifying sequence of processes by which the raw data are 
transformed to obtain the final objective: the characterization properties. 
 
While CHADA is easily interpretable by humans, the data is not structured for efficient and 
automated information retrieval. Based on CHADA, a new ontology named CHaracterization 
MEthodology Ontology (CHAMEO15) has been developed [35]. It provides a common framework for 
the development of ontologies related to specific techniques, enabling structured data that is 
machine-readable and facilitating semantic FAIR exchange of information. The CHAMEO ontology 

 
15 https://github.com/emmo-repo/domain-characterisation-methodology 



 

Battery Interface Genome - Materials Acceleration Platform 
 

 

44 

models common aspects shared across different characterization techniques. For more detailed and 
technique-specific aspects, specialized ontologies should be developed by extending the CHAMEO 
definitions.  
In the context of batteries, BattINFO (Battery INterface Ontology), developed within BIG-MAP by 
WP7, serves as a formal, machine-readable model encapsulating knowledge about electrochemistry 
and batteries. This ontology describes cycling processes, as well as battery definitions such as types, 
components, materials, and more.  
 
While significant progress has been made in the development of ontologies, there is still work to be 
done to help and motivate experimental battery scientists to fully exploit ontologies for all 
characterization data. Within WP5, we have considered this and hosted, during the data analysis 
workshop, an ontology session led by S. Clark (WP7). WP5 scientists were introduced to the linked-
data concept and followed an ontologization tutorial. WP5 scientists are committed to this 
comprehensive vision of linked data and are ready to use tools to ontologize their data. 
Work is underway by WP7 in that regard. They have developed Batt-o-Matic, a prototype BIG-MAP 
app designed to display metadata from datasets, add new metadata entries, visualize through a 
knowledge graph, and generate ontologized metadata. The specification process must be carried 
out technique by technique, ensuring a comprehensive and consistent approach for the future.  

 
One main objective of WP5, and task 5.4, is to ensure that the data generated within WP5 remains 
comprehensible, reproducible, and interoperable. Through our data analysis work, we have 
witnessed that the standardization and automation of data analysis are essential components to 
allow reproducibility and interoperability, as well as to handle large amounts of data. Through 
diverse examples and a dedicated focus on specific techniques, we have highlighted the necessity 
of data analysis standardization and automation in the context of advanced material 
characterization. 
 
Our work has spanned a range of scientific objectives, from the crystallographic study of LNO, with 
an emphasis on the analysis of XRD diffraction data, to our focus on vibrational spectroscopy 
encompassing Raman and FTIR techniques, the post-mortem analysis of reproducibility through the 
XPS technique and the advanced tomography segmentation employing machine learning methods. 
In response, we have developed and implemented tailored data analysis methods, common 
protocols and formats, tools, and algorithms, which have facilitated a streamlined and consistent 
data interpretation process across diverse experiments. Specifically, active learning for tomography 
segmentation and the on-the-fly LNO phase identification represent valuable assets for the research 
community, highlighting the potential of artificial intelligence in material characterization. By 
adopting standardization and automation, we are not only simplifying data analysis but also 
establishing a robust and reliable foundation for further advancements in battery research. 
 
Inter-WP collaboration has been instrumental in our progress, as we have actively engaged in 
scientific multi-partner collaborations, and the development of insightful workshops to address 
specific challenges in data analysis such as the round-robin analysis, aiming at converging on XPS 
data analysis standardization protocols. Intra-WP collaboration has also played a pivotal role in the 
creation of automated tools for data analysis, exemplified by PRISMA (WP9) and the segmentation 
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tool (WP11), both developed with the vision of meeting the needs of the characterization data 
analysis. 
 
Looking ahead, the groundwork conducted within WP5 in data analysis lays the path for future work 
and opens up exciting possibilities. As we continue to accumulate large and diverse datasets, the 
need for even more advanced data analysis techniques and tools becomes evident. Multi-technique 
correlation based on data from the 5.3 experimental workflow, although outside the scope of the 
current task, presents an exciting challenge that we have just started addressing and will continue 
in future projects. Moreover, after being introduced to ontologies in the data workshop, we are 
committed to produce interoperable, linked data, enhancing the accessibility and utility of data for 
the research community. 
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 Description of experimental techniques and data sets 
The different characterization techniques used in WP5 were outlined in the experimental matrix 
(D5.1). In this report, our attention is directed towards a specific subset of these techniques, which 
is detailed below. For each of them, essential information is provided, including a concise 
description of the technique itself, description of the raw data format, the typical software used for 
data analysis, and the main observables. 
 
 Raman: Raman is a spectroscopic technique used to determine the vibrational modes of 

molecules based on the inelastic scattering of light. It provides a structural fingerprint by which 
molecules can be identified. When a material is irradiated with a monochromatic light, a small 
portion of the scattered light undergoes a change in frequency due to interactions with 
molecular vibrations, rotations, and other excitations within the material. This shift in frequency, 
known as the Raman shift, provides valuable information about molecular composition, 
structure, and bonding in the material.  

• Partner: ex situ and operando experiments by CTH. 
• Raw data: txt format 
• Pre-processed data: Raman shift vs. Intensity 
• Data analysis: PRISMA software, output data in txt. 
• Observables: electrolyte composition, chemical gradients (e.g., electrolyte concentration 

gradients near the electrodes), carbon structure and intercalation processes in anodes. 
 
 Fourier Transform Infrared (FTIR): FTIR is a spectroscopic technique used to determine the 

vibrational modes of molecules based on the absorption of IR radiation by the material. It is 
complementary to the Raman technique, probing vibrational excitations of the sample and thus 
providing a unique structural fingerprint for molecule identification. Selection rules for Raman 
and IR active modes are defined by the molecular vibrational symmetries. The vibration is Raman 
active if the vibrational mode results in the change of net polarizability, while the vibrational 
mode is IR active if there is a change in the net dipole moment. Therefore, the two techniques 
normally have different active modes and are complementary to each other.  

• Partner: ex situ and operando experiments by CTH and CSIC. 
• Raw data: txt format. 
• Pre-processed data: wavenumber vs. Intensity 
• Data analysis: PRISMA software, output data in txt. 
• Observables: electrolyte solvation structure and speciation, electrode/electrolyte 

interfaces.  
 
 XRD: X-ray diffraction is an elastic scattering technique used to analyze the crystal structure of 

materials. A sample is irradiated with monochromatic X-rays and a diffraction (scattered) 
pattern is measured. The intensity and angles of the scattered X-rays are used to obtain 
information about the arrangement of atoms within the material structure, including crystal 
phases, lattice parameters, and crystallographic orientation. XRD is valuable for identifying and 
characterizing crystalline materials, determining their composition, and studying phase 
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transitions. At synchrotron facilities, sensitivity is improved, thus giving higher spatial and 
temporal resolutions. 

• Partner: ex situ and operando experiments by DTU and CEA. 
• Raw data: depending on the instrument, it can be text file .xy, .txt or binary file .raw. 

Processed by data conversion or data reduction (mainly for synchrotron XRD data). 
• Pre-processed data: 2θ angles (scattering angles) vs. intensity values (arbitrary units). 
• Data analysis: Topas, FullProf, and PRISMA.  
• Main observables: phases, lattice parameters, atomic coordinates, site occupancies. 

 
 XPS: X-ray photoelectron spectroscopy employs the photoelectric effect to determine surface 

elemental composition. Penetration depth (10-100 µm) depends on the radiation source. X-ray 
beam hits the surface of a material. The energy absorbed that is needed to cause the core 
electron to be emitted and subsequently detected is unique to each element, allowing the use 
of binding energy (BE) to identify the elements present on the surface of the material. BE 
changes with the chemical environment of the element causing an effect known as chemical 
shift. Thus, XPS can estimate the thickness, uniformity, and surface chemistry of the sample’s 
surface, being of great interest in SEI studies. XPS in synchrotron sources are called HAXPES, 
Hard X-ray Photoelectron Spectroscopy. The increased energy of the X-rays allows for deeper 
penetration into the sample, enabling the study of bulk properties and buried interfaces. 

• Partners: ex situ and operando experiments by CEA, UU and SOLEIL. 
• Raw data: format is in .spe. 
• Pre-processed data: Binding energy vs. intensity. 
• Data analysis: CasaXPS. 
• Main observables: SEI/CEI chemistry and composition 

 
 Electrochemistry: experiments encompass measurements and analyses of electrical properties 

and behavior within battery systems. It provides insights into the performance, efficiency, and 
durability of batteries. Most of our partners use EC-Lab. Electrochemical data is integrated with 
other characterization data during operando experiments. 

• Partners: CSIC, NIC for cycling experiments, plus every partner that performs operando 
experiments. 

• Raw data: format is in .mpr 
• Pre-processed data: EC-Lab software 
• Data analysis: any visualization software such as KaleidaGraph, Gnuplot, Origin. 
• Main observables: potential (V), current density (A), capacity (mAh), Specific capacity 

(mAh/g) 
 
 X-ray Tomography:  X-ray tomography makes use of an X-ray beam (either parallel or conical in 

a synchrotron set-up) to visualize in 3D a solid object including its surface and internal features. 
It is theoretically a non-destructive way of probing an object. The beam energy can vary widely 
depending on the set-up used and will influence directly the maximum size of the object that it 
is possible to acquire. Spatial resolution is dependent on a combination of factors including 
beam size, detector size and resolution, object position and size. The basic working principle is 
similar as to a CT medical scan, the object (or area to image) is fully illuminated by the X-ray 
beam and the transmitted beam is collected at numerous angles, here by rotating the sample, 
generating a set of images called radiographs or projections. These radiographs can then be used 
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to reconstruct the 3D volume. Several algorithms and methods are available for the acquisition 
and reconstruction, from pure absorption contrast to phase retrieval, which will have an effect 
on the visible features inside the final reconstructed volume. 

• Partners: CEA, ESRF and CTH at the ESRF and SOLEIL for operando and ex situ 
experiments. 

• Raw data format: HDF5 format. Typical primary data is a count number (beam intensity) 
per pixel in the detector for every projection acquired. 

• Pre-processed data: The radiographs can usually be previsualized with ImageJ/Fiji or 
Python if needed. The 3D volume reconstruction is usually performed through in-house 
developed software and facilities due to the process complexity and performance 
resource-intensiveness. The final volume usually consists in a set of tif images (either in 
separate files or in a single file stack). 

• Data analysis can be performed through various software either commercial or open-
source. Open-source software used in BIG-MAP are Fiji/ImageJ and Python. 

• Main observables: 3D geometrical features like bulk morphology, phase volume 
fractions, porosity, interfacial area, particle size, fractures in the material, etc. 

 
 NPD: Neutron powder diffraction. A monochromatic neutron beam impinges on the sample and 

the scattered neutrons are collected on a 2D detector. This technique, widely used in battery 
research, is employed to obtain the crystallographic structures of the material (i.e., the position 
of the atoms in the cell). By measuring the intensities and the positions of the scattered neutron 
spots/arcs in the resultant diffraction pattern, we can deduce the crystal structure, phase 
fractions, crystallite morphology, as well as strain information. 

• Partners: CEA at the ILL 
• Raw data format: NeXus format (HDF5).  
• Processed with Int3D or Mantid (at ILL). 
• Data analysis: refinement done with FullProf.  
• Main observables: lattice parameters, phases, atomic coordinates, site occupancies. 

 XRD standardization 
In order to define a scheme for XRD data analysis standardization, specific partners performed 
parallel data analysis. Each of them filled out a report. The report includes pre-data analysis 
information such as description of the sample, experimental context, any requisites for data pre-
processing or visualization and input crystallographic information. It also compiles details of the 
refinement process. This includes background selection and subtraction, consideration of data 
smoothing functions and selected fitting functions for the peak shaping. A categorical delineation 
of the sequence in which parameters were refined – first, second and so on and so forth — is listed, 
as well as the specific statistical measures used to achieve refinement convergence and their values. 
Figure 24 shows an example this report. 
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Figure 24. Example of report filled during XRD data analysis. 

 XPS data analysis workshop details 
The XPS workshop was hosted at the EPN campus by ILL and ESRF, together with the coordination 
of CEA. It was part of a larger WP5 meeting that included another additional workshop (see Section 
7) as well as a full day of scientific talks from all WP5 partners. 
The workshop was guided by three XPS experts, A. Benayad, F. Capone and R. Fantin. They 
introduced the technique, presented a data analysis demo, tutored the participants and guided 
discussions. 
 
Tutors:  
- Anass Benayad (CEA-Liten, WP5) 
- Federico Capone (CNRS, WP5) 
- Roberto Fantin (CEA-Liten, invited) 
 
Participants: 
- Francois CADIOU (ESRF, WP5) 
- Jack FLOWERS (KIT, WP10) 
- Stefan FUCHS (KIT, WP10) 
- Cinthya HERRERA (ILL, WP5) 
- Quentin JACQUET (CEA, WP5) 
- Thanh Loan LAI (CEA-Liten, invited) 
- Poul NORBY (DTU, WP5) 
- Lucía PEREZ RAMIREZ (SOLEIL, WP5) 
- Alexandre PONROUCH (CSIC-ICMAB, WP5) 
- Shatakshi SAXENA (CEA-Liten, invited) 
- Giorgio BARALDI (CID, WP6) – online 
- Ajay GAUTAM (TUD, WP5) – online 
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During this exercise, the participants worked individually or in pairs on the data analysis. Supporting 
material such as handbooks, databases and key papers were available. Each participant filled out a 
report to document their analysis. Figure 25 displays an example of this report, which includes 
information of the expertise of the participant, the chosen parameters for the fitting, results of the 
fit for selected core levels, such as area, position, FWHM and fit function used, and examples of the 
fitting. Participants that had a CasaXPS license shared the CasaXPS project file, while those working 
with the demo version shared screenshots of the fitting. 
 

  
Figure 25. Example of the reports filled out by each of the participants. 

 Big data and FAIRness workshop participant list 
Together with the XPS workshop, we also organized a big/bad data and FAIRness workshop, further 
described in Section 7. Here is a list of the participants. 
  
Tutor: 
- Simon CLARK (SINTEF, WP7) 

 
Participants: 
- Didier BLANCHARD (ESRF, WP5) 
- Francois CADIOU (ESRF, WP5) 
- Federico CAPONE (CNRS, WP5) 
- Jack FLOWERS (KIT, WP10) 
- Stefan FUCHS (KIT, WP10) 
- Cinthya HERRERA (ILL, WP5) 
- Quentin JACQUET (CEA, WP5) 
- Sandrine LYONNARD (CEA, WP5) 
- Lucía PEREZ RAMIREZ (SOLEIL, WP5) 
- Giorgio BARALDI (CID WP6) – online 
- Andy NAYLOR (UU, WP5) – online 
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