

The BIG-MAP Stakeholder Initiatives

Why launch the Stakeholder Initiatives (SI)?

- To strengthen the integration of the BIG-MAP infrastructure with leading external stakeholders, widely used soft- and hardware infrastructure and equipment, etc., in the battery community
- The SI projects are smaller, focused collaborative projects between one or more external stakeholders and one or more BIG-MAP partners targeting the integration of the BIG-MAP infrastructure in the European value chain for battery discovery and development
- Why now?
 - We would like our stakeholders and the community to be involved from the start

Call for BIG-MAP Stakeholder Initiatives

The Battery Interface Genome - Materials Acceleration Platform (BIG-MAP) is the largest of the seven H2020 projects constituting the large scale and long term European research initiative BATTERY 2030+ (www.battery2030.eu). BIG-MAP constitutes a joint effort of 34 European partners spanning academia, research organizations and industry (www.bistemap.eu) to create a paradigm shift in battery innovation, which will lead to a dramatic acceleration of the battery discovery process, achieving a 5-10-10 fears. BIG-MAP relies on the development of a unique R&D infrastructure and accelerated methodology that unites and integrates insights from leading experts, competences and data throughout the battery (discovery) value chain with Artificial Intelligence (AI), high-formance computing (HPC), large-scale and high-throughput characterization and autonomous synthesis robottics. In short, BIG-MAP aims to reinvent the way we invent batteries and to develop core modules and key demonstrators of a Materials Acceleration Platform secelifically designed for the accelerated discovery of battery materials and interfaces.

To strengthen the integration of the BIG-MAP infrastructure with leading external stakeholders, widely used soft- and hardware infrastructure and equipment, etc., in the battery community, BIG-MAP launches a call for so-called Stakeholder initiatives (SI). The SI projects are smaller, focused collaborative projects between one or more external stakeholders and one or more BIG-MAP partners targeting the integration of the BIG-MAP infrastructure in the European value chain for battery discovery and development.

Call conditions

The proposed projects should develop software tools, techniques, equipment or approaches that further strengthen the BIG-MAP infrastructure and must be made openly available to the battery community, e.g., in the BIG-MAP AppStore.

- Topics: The first round of proposals should be in one of the following areas:
 - 1) Develop APIs or interfaces between the BIG-MAP infrastructure and one of the LC-BAT-13/14/15-2020 projects 2) Development of APIs/Interfaces to software, techniques or equipment widely used in the battery community 3) Development of apps for autonomous analysis of BIG-MAP and an accordance of the API and a superior a
- Apply the BIG-MAP infrastructure to further the develop of novel battery chemistries
- Partners: The project must include a minimum of 1 BIG-MAP partner and 1 external stakeholder.
- Budget: Expectedly around €50.000 for the BIG-MAP partner(s) and €50.000 for the external stakeholder(s). A
 maximum of 5 SI grants will be awarded in this round.
- Duration: 1-2 years, with an end date no later than July 1st, 2023.
- Length: 3 pages max plus the CV of the main PI from the BIG-MAP partner(s) and the main PI from the stakeholder(s).
- Submission: The proposals (max 20 Mb) must be submitted to <u>BIG-MAP@dtu.dk</u> by Wednesday, April 7, 2021 to be eligible. Decisions of the allocation of funding are expected ultimo May, 2021.

Assessment procedure and criteria

The proposals will be evaluated by three independent experts and the Executive Board according to their

- Value to BATTERY 2030+ and the European battery community
 Novelty and impact of the proposed idea or approach
- Novelty and impact of the proposed idea or approach
- The competenses of the PIs
- . The feasibility of the project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957189.

Conditions for the 1st SI applications

- Partners:
 - The project must include a minimum of 1 BIG-MAP partner and a minimum of 1 external stakeholder
- Budget:
 - Up to ~€50.000 for the BIG-MAP partners and ~€50.000 for the external stakeholder(s)
 - More partners can be included, but within a total budget of up to ~€100.000
 - An overview budget must be submitted (use <u>template</u>)
 - Eligible costs: salary, running cost, equipment (detail budget for granted projects)
 - A maximum of 5 SI grants will be awarded in this round
- Project duration:
 - 1-2 years, with an end date no later than July 1st, 2023
- Proposal length:
 - 3 pages max plus the CV of the main PI from the BIG-MAP partner(s) and the main PI from the stakeholder(s)

Conditions for the 1st SI proposals

- **Conditions**: The proposed projects should develop software tools, techniques, equipment or approaches that further strengthen the BIG-MAP infrastructure and should be made openly* available to the battery community, e.g., in the BIG-MAP App Store
 - Ex: an app adhering to the BattINFO ontology and the BIG-MAP data schema
- **Topics**: The first round of proposals should be in one of the following areas:
 - Develop APIs or interfaces between the BIG-MAP infrastructure and one of the LC-BAT-13/14/15-2020 projects
 - Development of APIs/interfaces to software, techniques or equipment widely used in the battery community
 - Development of apps for autonomous analysis of BIG-MAP data
 - Apply the BIG-MAP infrastructure to further the develop of novel battery chemistries

*) Open doesn't necessitate free. Externalizable, but could, e.g., be free to academics only DTU Energy, Technical University of Denmark

Submission and Assessment

Submission:

- -The proposals (max. 20 Mb) must be submitted to BIG-MAP@dtu.dk by Wednesday, April 7, 2021 to be eligible
- Decisions of the allocation of funding are expected ultimo May, 2021

Assessment procedure and criteria

- The proposals will be evaluated by three independent experts and the BIG-MAP Executive Board according to their:
 - Value to BATTERY 2030+ and the European battery community
 - Novelty and impact of the proposed idea or approach
 - -The competences of the PIs
 - -The feasibility of the project

What could an SI deliverable look like?

- A REST API like OPTIMADE (Casper Welzel Andreasen, EPFL)
- Working example of an Analysis App Prisma (Eibar Flores, DTU)
- An Electronic Lab Notebook (CNRS, RS2E and collaborators)

DTU Energy, Technical University of Denmark

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957189

BATTERY 2+3-

Python-based, Robust, data-Intensive Spectrum Monitoring App

Initial view

PRISMA: An app for the analysis of spectra

Load your time-dependent spectra, explore processing parameters within the user-friendly interface and apply your choices to process all spectra. Your results are plot-ready: they are stored as .csv files recognized by all major scientific plotting software.

Eibar Flores, Technical University Denmark

- ▶ Choose a Pipeline
- ▶ Explore Processing Parameters
- ▶ Apply Parameters to all Spectra

Eibar Flores (DTU)

PRISMA: An app for the analysis of spectra

Eibar Flores, Technical University Denmark

BATTERY 2+3-

n gui | Idle

Electronic Laboratory Notebook - Workflow

Electronic Laboratory Notebook – using BattINFO 2 • 3 •

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957189

Electronic Laboratory Notebook

Sample	Technique	Data	
Raw Data			Lab
Location	Local PC 🛠	online 🔕	notebook
URL			
	https://myrepository.org/user/	Milyra	
Format of t Who to contact	csv / txt / json to access raw data: experimen	italist or other	
	Experimentalist: raw data		
Name	George Michael		Data storage
Email	gmichael@university.ct		
Analysis Data			
Describe the pr	ocess, location, and format of t	the analyzed data	
Location	Local PC 🛠	Online 🖎	
URL	https://myrepository.org/user/	/myai	Automated
Format of t	csv / txt / json		data analysis
Who to contact	to access analysis data: experi	mentalist or other	
	Experimentalist: analyzed d	lata	
Name	George Michael		
Email	gmichael@university.ct		———— Alexis Grimaud, Fernando Card
			search and innovation programme under grant agreement No 957189 (CNRS)

How can you contribute?

Q&A on the Stakeholder Initiatives

Wrap up

Summary

- BIG-MAP: transitioning from sequential and Edisonian battery development to autonomous discovery of battery materials and interfaces/interphases
- AI-orchestrated acquisition of multi-fidelity data from simulations, machine learning and experiments to accelerate the discovery and synthesis process
- Establishing a common battery ontology (BattINFO), standards and protocols
- Develop externalizable tools for the European battery community (App Store)
- Creating closed-loop discovery workflows bridging simulations and experiments using uncertainty quantification
- Develop physics-aware spatio-temporal deep learning models for inverse design of battery materials and interfaces
- The Stakeholder Initiative call is now open for collaborative projects
- Special thanks to EMIRI and the BIG-MAP Management Support Team and to you for joining our webinar!

Follow us on www.BIG-MAP.eu

...and on LinkedIn and Twitter: @BIGMAP_EU

DTU Energy, Technical University of Denmark

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957189