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ABSTRACT 
This deliverable unveils a groundbreaking shift in predictive models, seamlessly transferring 
expertise from lithium-ion to emerging systems like sodium and magnesium-based technologies. 
Addressing lithium-ion limitations, our approach accelerates sustainable energy storage solutions 
through machine learning models and tailored experimental techniques. Demonstrating remarkable 
adaptability, our methodologies contribute significantly to the overall progress in energy storage 
technologies. 
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The evolving landscape of battery technologies demands predictive models that transcend 
traditional lithium-ion systems. This formal deliverable showcases the successful transfer of models 
designed for lithium-ion to emerging frontiers like sodium- or magnesium-based systems, 
addressing the limitations of lithium-ion technology and advancing sustainable energy storage 
solutions. 

This deliverable covers machine learning models for battery lifetime prediction and tailored 
experimental approaches to assess transferability. Demonstrating adaptability beyond the original 
scope underscores the versatility of our methodologies, contributing to the overall advancement of 
energy storage technologies. 

The subsequent sections delve into specific aspects of transferability, including the lithium and 
sodium battery lifetime generator using regression approach and electrode embedding, deep neural 
network for battery capacity face prediction, the transition from Li-ion to magnesium metal anode-
organic battery, experimental approaches towards transferability to novel battery chemistries and 
electrolyte systems (Li/Na/Mg) based on AIMD and machine learning simulations. Each section 
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provides a comprehensive understanding of the methods employed and outcomes achieved in 
extending predictive models to diverse energy storage technologies, shaping the trajectory of future 
advancements in the field.

 

2.1 Introduction 
The current landscape of predicting battery lifetime demands the evolution of machine 

learning (ML) models capable of transcending specific chemical compositions and technological 
variations. Building upon Rieger et al.'s (13) foundational work on remaining useful lifetime 
prediction models (WP11), this study explores innovative methodologies to address this crucial 
requirement. Traditionally, prevalent models in this field rely on time series forecasting, using cycle 
estimation to construct input sliding windows. However, departing from this norm, our research 
introduces a novel approach focused on a regression-based model transfer from lithium-ion (Li-ion) 
technology to diverse chemical compositions and technological frameworks. This pioneering 
paradigm incorporates essential cell and testing characteristics, enabling the forecasting of battery 
lifetime across various chemistries and technologies. 

Utilizing an extensive dataset from WP6 and a synthesis of scholarly literature, our study 
enhances its neural network with multifaceted data, encompassing diverse chemistry and 
technology variants, battery designs, and various testing conditions. This comprehensive dataset 
forms the bedrock for developing an adaptable and versatile predictive model. Additionally, our 
research introduces an automated data postprocessing methodology, streamlining and refining the 
dataset through techniques such as time series outlier detection, correction, smoothing, and 
undersampling. This meticulous approach enriches the dataset and enhances the robustness and 
accuracy of subsequent predictive models. 

In terms of empirical findings, our newly devised model competes vigorously with existing 
state-of-the-art models and demonstrates remarkable performance across a wide array of 
scenarios. Unlike conventional models restricted to specific circumstances, our model's adaptability 
and competence across diverse scenarios underscore its unprecedented versatility. The structure of 
this section unfolds across distinct sections, meticulously examining battery data detailing the 
methodology, including model approach, electrode embedding techniques, feedforward neural 
network architecture, and the proposed Feedforward Neural Network (FNN) model tailored for 
lifetime generation. Subsequent sections elaborate on the empirical results obtained, leading to a 
comprehensive conclusion summarizing the findings and their broader implications within the field 
of battery lifetime prediction. 

2.2 Battery data 

2.2.1 Data acquisition 
Within the framework of BIG-MAP, this investigation systematically compiles approximately 1000 
cycling test outcomes by harnessing data derived from public repositories and scholarly 
publications. This expansive dataset encompasses parameters incorporating 11 distinct positive 
electrodes, four disparate negative electrodes, and various cell designs, such as coin, cylindrical, and 
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pouch configurations. The dataset comprehensively addresses static and dynamic charging and 
discharging profiles from C/10 to 8C, encompassing a wide range of working voltage windows and 
accommodating varying temperature conditions. The primary aim, facilitated by this comprehensive 
dataset, is developing a sophisticated machine learning model proficient in predicting battery 
lifespan across a spectrum of scenarios. 
 
The significance of this diversity extends to substantial benefits and practical applications. Firstly, 
the broad spectrum of cell chemistry enhances the model's utility and contributes to discovering 
novel electrode compositions. This diminishes the necessity for extensive experimental testing and 
augments the exploratory potential for new electrode compositions through electrode embedding. 
Secondly, incorporating dynamic charging and discharging profiles based on state of charge (SOC) 
evolution aligns with recent advancements in the field, wherein these protocols have garnered 
popularity due to their efficacy. Thirdly, the inclusion of cell design proves to be a pivotal aspect in 
facilitating the scalability of cells, ranging from coin to pouch configurations. The resultant table 
concisely summarizes the data employed in this methodology, adhering to established best 
practices in the composition of scientific papers. 

Table 1. Summary of all experimental data used in this model. 

Author 
Positive 
Electrod

e 

Negative 
Electrod

e 

Cell 
Design 

Chargin
g Profile 

Dischargin
g Profile 

Voltag
e Min 

Voltag
e Max 

Temperatur
e 

Attia et 
al. [1] LFP Gr Cylindric Dynamic 4 2 3.6 30 

Preger 
et al. [2] 

LFP, 
NCA, 

NMC811 
Gr Cylindric 0.5 0.5, 1, 2, 3 2, 2.5 3.6, 4.2 15, 25, 35 

Zhang et 
al. [3] LNO Gr, Gr/Si Coin 1 1 2.5 4.2 23 

Birkl et 
al. [4] LCO Gr Pouch 2 1.84 2.5 4.2 40 

He et al. 
[5] LCO Gr Prismati

c 0.5, 1 0.5, 1 2.7 4.2 23 

CAMP 
[6] 

LMNO, 
NMC532, 
NMC111, 
NMC622, 

NMC, 
NMC811 

LTO, Gr, 
Gr/Si Pouch btw 0.1, 

2 btw 0.1, 2 btw 
2.5, 3.5 

btw 3, 
4.8 23 

Severso
n et al. 

[7] 
LFP Gr Cylindric Dynamic 4 2 3.6 30 

CID & 
BM WP6 

[8] 

LNO, 
NMC811 Gr Coin 1 1, 2, 3 2.5 4.1, 

4.2, 4.3 15, 25, 45 

CID 
internal 

[9] 
NCA Gr/Si Cylindric 0.5 0.5, 1 2.5 

4.2, 
4.35, 
4.5 

10, 25, 45 

Wang et 
al. [10] NVPF HC Coin 5 5 2 4.5 25 
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Wei et 
al. [11] NVZP HC Cylindric 0.2, 0.5 0.2, 0.5 1 4.5 25 

Uthpala 
et al. 
[12] 

NVZP HC Coin, 
Cylindric 0.5 1 1, 1.5 4.05, 

4.2 28,40 

 

2.2.2 Data processing 
In the realm of large databases for machine learning, data postprocessing is pivotal. As datasets 
grow, so does complexity, introducing noise that can impact model performance. Postprocessing 
systematically refines data, enhancing quality to optimize machine learning model training. Its 
importance lies in cleansing data and directly boosting model accuracy and adaptability to complex 
datasets. In this context, postprocessing becomes essential for unlocking the full potential of 
machine learning in analyzing vast and intricate datasets, ensuring accurate and reliable insights. 
This way, an automatic methodology is built based on three steps: 
 

- Step 1 - Outlier detection and correction: The benefits of outlier detection lie in enhancing 
data quality. Identifying and correcting unusual data points improves the accuracy of 
analyses and models. This process ensures that anomalies that could adversely affect 
decision-making are addressed.  

- Step 2 - Time series smoothing: Time series smoothing offers the advantage of revealing 
underlying patterns and trends more clearly by reducing noise and variations. This improved 
clarity aids in better understanding the inherent behavior of the data, facilitating more 
accurate trend identification and pattern recognition. 

- Step 3 - Time series undersampling: Undersampling provides a balanced dataset by 
selectively reducing the number of data points, particularly from the majority class in 
imbalanced datasets. This balance mitigates the dominance of the majority class and 
prevents bias in machine learning models, ultimately improving predictive accuracy. In the 
specific context of this work, where each state of health (SoH) percentile has only one 
associated cycle, undersampling ensures a distributed learning approach across the entire 
life spectroscopy, contributing to a more comprehensive and unbiased model. 

 
 
 
 
 



 

Battery Interface Genome - Materials Acceleration Platform 
 

 

6 

 
Figure 1. An example of the automatic postprocessing. 

2.3 Methodology 

2.3.1 Model approach 
Most models within the field address lifetime prediction by employing time series forecasting 
techniques, wherein historical data from various cycling cells are utilized to forecast the behavior of 
another. These models learn from patterns, seasonality, trends, and relevant factors observed in 
the degradation evolution of other cells to predict a new one. However, they encounter challenges 
in making accurate long-term predictions due to several drawbacks: 
 

- Accumulation of errors: As predictions from previous cycles become part of the input 
sequence, error propagation and uncertainty in long-term simulations become challenging 
to control. 

- Limited historical context: Models may struggle to forecast beyond the range of the historical 
data they were trained on, lacking insight into potential future unforeseen events or shifts 
in underlying patterns. This challenge is particularly highlighted when predicting the 
evolution of a new cell based on similarities to others unless the model can compare among 
cells and testing conditions. 

- Sensitivity to inputs: While mid-term patterns can be forecasted from the initial set of cycles, 
predicting long-term patterns and behavior becomes challenging due to the extreme 
sensitivity of these input cycles. 
 

Thus, although machine learning models can effectively predict short to medium-term patterns by 
leveraging historical data, their accuracy diminishes for longer-term forecasts due to input 
sensitivity and uncertainties related to future events and patterns. Consequently, we propose 
utilizing a regression approach for battery lifetime forecasting, integrating domain knowledge 
encompassing cell chemistry, design, and testing conditions. This approach addresses the limitations 
of time series forecasting by incorporating more comprehensive domain-specific information. 
The regression approach employed here is intended to enrich the machine learning model by 
incorporating detailed information about the specific cell characteristics and the varied conditions 
under which testing is conducted. This strategic inclusion of diverse data aims to render the solution 
adaptable and transferable, ensuring its efficacy across a spectrum of scenarios and applications. 
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Furthermore, the essence of the battery lifetime forecast hinges on the prediction of cycle numbers 
associated with particular SoH percentiles. This approach essentially aims to discern and forecast 
the conclusion points for each percentile, providing insight into when a specific SoH percentile is 
anticipated to reach its culmination. The model offers precise estimations regarding the termination 
phase of individual SoH percentiles, enhancing the comprehensive understanding of battery lifetime 
prognosis. 
 

      
Figure 2. a) Illustration of battery lifetime prediction based on time series, b) battery lifetime prediction 
based on regression approach. 

2.3.2 Electrode embedding 
A significant challenge emerged in the pursuit of integrating comprehensive data related to cell 
properties and testing conditions, particularly concerning the intricate and pivotal role played by 
the positive and negative electrodes within the cell behavior framework. Recognizing the complexity 
and criticality of this facet in our study prompted the development of a specialized embedding 
technique, drawing inspiration from the concept of word embedding utilized in Natural Language 
Processing. 

Unlike words, electrodes possess measurable and detailed characteristics. Leveraging this 
distinction, we established a customized electrode mapping methodology akin to word embedding. 
This approach incorporates principal component analysis (PCA) to effectively reduce dimensionality, 
facilitating a concise representation of electrode characteristics. Consequently, this electrode 
mapping technique is a foundational mechanism for comprehensively capturing and  
analyzing the nuanced attributes of electrodes within the cell behavior domain. By leveraging this 
custom embedding strategy, the machine learning process becomes adept at juxtaposing various 
electrodes, thus enabling the establishment of a comprehensive map illustrating similarities 
between them. This methodology facilitates a nuanced comparison among different electrodes, 
consequently engendering an intricate map delineating their respective similitudes. 
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Figure 3. The electrode map is based on principal component analysis (PCA) and visualized using the most 
important principal components (PC). 

2.3.3 Proposed neural network model 
The feedforward neural network, a foundational structure within artificial neural networks, 
orchestrates unidirectional information flow—originating from input nodes, traversing potential 
hidden layers, and culminating at output nodes without cyclic connections. Compared to more 
intricate counterparts like recurrent or convolutional neural networks, feedforward neural networks 
work accurately in solving regression problems thanks to their simplicity. 

Architecturally, it consists of three distinct layers: input, hidden, and output. Each layer comprises 
individual neurons interconnected through weighted links. The input layer, aligned with input data 
dimensions, transmits inputs to subsequent layers. Hidden layers, functioning as computational 
cores, compute weighted sums of preceding layer outputs, apply activation functions, and transmit 
outcomes. Finally, the output layer generates network outputs based on provided inputs. 

Neurons in each layer establish complete interconnections with those in the subsequent layer, with 
connection strength represented by weights. Learning involves iterative weight updates responding 
to output errors. 
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Figure 4. An illustration of the Feedforward Neural Network model. 

2.4 Results 
The outcomes of our comprehensive study, enabled by a meticulously curated database and an 
intricate post-processing methodology, underscore the model's remarkable forecasting precision 
across the entire spectrum of electrodes and other input parameters. This uniform accuracy holds 
for the entire range of input data on which the model has been trained. Consequently, there is no 
imperative to adapt or employ distinct methodologies when working with lithium-ion or sodium-ion 
technologies, given that all experimental data is centralized. 

 
Figure 5. a) NMC811/Gr b) NMC532/Gr-Si c) LFP/Gr d) NVZP/HC. 
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Furthermore, our battery lifetime generation mechanism simulates the model multiple times with 
identical inputs, varying solely the SOH input value to forecast the cycle number. This approach 
facilitates the expeditious generation of SOH evolution through a limited number of simulations, 
eliminating the need to forecast every cycle. This not only reduces the potential for error or 
uncertainty but also enhances the efficiency of the process. Conversely, a singular simulation can 
accurately determine the cycle number at which the model reaches 80 % SOH, providing valuable 
insights with a minimal computational burden. The model interpretation reveals its proficiency: 
 

- Accurate comprehension of capacity decay without relying on time series. 
- The distinction between different capacity evolution shapes. 
- Precise forecasting in diverse scenarios involving various cell chemistry, cell designs, or 

testing conditions. 
- Correct predictions across a range of cycling lengths, from 50 to 5000. 
- Applicability to both lithium-ion and sodium-ion cells 

 
The model's accuracy is estimated by using mean absolute percentage error (MAPE) to understand 
the error magnitude easily. Nevertheless, the model comparison is not straightforward due to the 
MAPE limitations regarding small denominators or data differentiation among different models.  

Table 2. Comparison of different battery lifetime prediction models. 
Publication Date Model used MAPE [%] 

CIDETEC approach 2024 FNN 6.6 
Rieger et al. (13) 2023 LSTM 10.6 

Severson et al. (7) 2019 Regression models 8.6 
Fuzhan et al.  (14) 2023 LSTM Encoder-Decoder 9 

Choi et al. (15) 2019 LSTM 1.08 
Park et al. (16) 2020 LSTM 1.02 

2.5 Conclusion 
Adopting a regression-based approach for battery lifetime prediction significantly departs from the 
prevalent time series methodology. While delivering comparable accuracy to existing state-of-the-
art models, our model distinguishes itself by its heightened flexibility and remarkable adaptability 
across diverse chemistries and technologies. Notably, one pivotal advantage of this approach lies in 
its independence from requiring initial experimental cycles to forecast cell lifetimes. This 
breakthrough allows the prediction of non-assembled or untested cells based solely on cell 
properties and historical data within the battery testing domain. 
Introducing an advanced automatic postprocessing methodology is a cornerstone achievement, 
specifically designed to manage vast datasets and address the challenges inherent in harnessing big 
data for future endeavors. This robust methodology streamlines data processing, setting the stage 
for more efficient analysis and modeling and positioning our approach at the forefront of handling 
extensive data challenges. 
 
While our model exhibits commendable accuracy and robustness, continued enhancement is 
achievable by including a more diverse array of scenarios encompassing varied cell chemistries, 
designs, and testing conditions. Broadening the scope of our dataset will undoubtedly fortify the 
model's predictive capabilities, ensuring its efficacy across a wider spectrum of real-world scenarios. 
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However, an identified limitation lies in electrode embedding based on PCA, where adding new 
electrodes alters the positions of existing ones, impeding the insertion of new electrodes. To 
circumvent this challenge, we propose leveraging the encoder-decoder neural network 
architecture, mitigating input penalization by creating an embedding after the encoder part. This 
innovative approach addresses the electrode insertion obstacle and exhibits promise in battery 
lifetime prediction and other deep learning fields. 
Lastly, envisaged improvements involve incorporating information and properties related to 
electrode manufacturing or cell-forming steps into the model. This augmentation aims to empower 
the model to adapt and evolve alongside changes in battery lifetime, further enhancing its predictive 
accuracy and relevance in real-world applications. 
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3.1 Introduction 
The capacity of rechargeable Li-ion batteries decreases over time due to several degradation 

mechanisms. Cells must be cycled for enough cycles to study capacity loss over longer timescales, 
resulting in test times that can take up to several months. This requires a large time allocation on 
the battery cyclers. Being able to predict the curve based on early cycling data without having to 
perform all these cycles is, therefore, a major advantage in operational efficiency for battery 
material producers such as Umicore. 

The degradation of batteries is a complicated process that involves multiple mechanisms 
interacting at different timescales. As a result, it is challenging to define a physics-based model that 
accurately predicts the capacity curve. However, recent advancements in artificial intelligence have 
encouraged data-driven approaches (e.g., Saxena et al. (1) or Rieger et al.(2)), which have shown 
promise in predicting these types of non-linear problems. In this context, CIDETEC has developed a 
deep neural network (DNN) that predicts the capacity fade of a battery based on the type of 
electrodes and electrolyte used, the cell design, the nominal capacity of the cell, the C-rate used for 
charging and discharging, the voltage window used for cycling, and the test temperature. Here, 
Umicore has internalized this architecture and developed this deep neural network with the help of 
CIDETEC, performed various tests on its internal data, and evaluated the model's performance. This 
work thus contributes to this deliverable on accessing the transferability of such models to different 
chemistry (from LFP to NMC) and to a different environment from CIDETEC to Umicore. 

3.2 Methods 

3.2.1 Input of the neural network 
As a cathode active material manufacturer, Umicore is particularly interested in predicting battery 
capacity curves for different cathode materials. The test protocols are fixed for the batteries used 
in this study, and the parameters used by CIDETEC, such as C-rate or voltage window, do not vary 
significantly. This is why Umicore retains only three inputs used by CIDETEC: the nominal capacity 
of the cell, the temperature, and the cycle number. Additionally, Umicore adds two parameters 
derived from the voltage curves: the difference between the capacity obtained at the 3rd cycle and 
the 100th cycle and the difference in the area under the voltage curve between the 3rd and 100th 
cycle. 
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3.2.2 Dataset 
The deep neural network model (DNN) is tested on an internal dataset from Umicore. The dataset 
consists of batteries with NMC cathode active material where different coatings, doping, and 
synthesize conditions are used; the batteries are tested at varying temperatures. 
 

3.3 Results 

3.3.1 Results of the DNN 
The DNN is trained using 60 % of the data as a training set, 15 % of the data as a validation set, and 
25 % of the data as a testing set. The architecture and its parameters are optimized to obtain the 
results with the lowest prediction error (i.e., the mean squared error (MSE) between the actual and 
the predicted curve regarding the SOH values is minimized).  
The parameters optimized for the model are the activation function (a function that transforms the 
input between two consecutive layers), the loss function (a function that calculates the error 
between the actual value and predicted value), and the features explained in section 3.2.1.  
Different activation functions have been applied to find the optimal activation function. Using a 
“swish” or “relu” activation function to train the model gives the best results on the test set, i.e., 
the error between the actual curves and the ones predicted is minimized. Especially using the “relu” 
activation, the performance increases for curves without knee point (the point where the slope of 
the capacity curve changes and the cell decays faster). Moreover, the end-of-life prediction, which 
is defined as 80% of initial capacity, improves when using the “relu” activation function.  
Similarly, models using different loss functions training the DNN have been carried out. It is observed 
that the best performance is obtained by using the ‘mean squared error between the actual and the 
predicted curves’ as a loss function. 
 
Finally, experiments have been performed to assess the model’s performances using different 
features. It is shown that removing the “area” and the “last point” of the voltage curve as features 
(explained in section 3.2.1) decreases the model performances on the test set (RMSE multiplication 
of ~2.5 and MAE multiplication of ~2). Moreover, the addition of features used by Severson et al. 
(3) (skewness, kurtosis, slope, and intercept of the linear fit to the first point) allows for 
improvement in the overall model’s performance. 
To train the model with the parameters described above, it has been observed, as shown in Figure 
6, that about 200 epochs are needed: 
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Figure 6. The train and validation loss. 

To quantify the results, two error metrics are calculated:  
 

- The root mean square error (RMSE) of the capacity curve is calculated for each battery in the 
test set, and for each cycle, the squared difference between the predicted capacity curve 
and an experimentally measured capacity curve is calculated. The RMSE is obtained from 
this by taking the root of the averaged squared differences. An RMSE percentage is obtained 
by comparing the RMSE by the capacity window (initial capacity – EOL capacity criteria). 

- The RMSE of the capacity curve is calculated for each battery in the test set, and for each 
cycle, the squared difference between the predicted capacity curve and experimentally 
measured capacity curve is calculated. The RMSE is obtained from this by taking the root of 
the averaged squared differences. An RMSE percentage is obtained by comparing the RMSE 
by the capacity window (initial capacity – EOL capacity criteria). 

 
Graphically, most of the predicted curve shapes have similar profiles to the actual curves. However, 
some outliers do not capture the right curve shape. 

 
The following metrics give the best results: 
 

• RMSE on the capacity curve: 6.5 %. 
• MAPE on the end-of-life: 10 %. 

 
So far, cross-validation has not been carried out. The results of the model are shown in Figure 7. 
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Figure 7. Results of the DNN on Umicore data. Left the actual model. Actual vs predicted EOL and MSE 
distribution. Right, histogram of a number of batteries as a function of MSE.  
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Mg metal batteries are attracting significant research interest due to the high gravimetric and 
volumetric capacity of Mg metal anodes. However, major challenges can be identified as a lack of 
practically applicable Mg electrolytes and cathode materials (1). In recent decades, significant 
improvements have been achieved in the field of Mg electrolytes, while the standard inorganic 
cathode material is - still more than two decades old - the Chevrel phase, Mo6S8 (2). Significant 
progress has been achieved through the utilization of organic cathode materials. Organic materials 
have significantly more adaptable structures that accommodate multivalent cations with larger 
charge densities (3). Hence, direct transfer of Li-ion type rocking chair battery designs is not possible, 
and we utilized a Mg metal anode setup with an n-type organic cathode based on conjugated 
carbonyl active materials (Figure 8). 
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Figure 8.  The conceptual shift from conventional Li-ion battery (left) compared to Mg metal-organic 
battery (right) utilized in this work, recreated from references 4,5.   

 
In our work, we utilized a half-cell setup using the Mg metal foil anode counter electrode, organic 
working electrode, and glass fiber separator in a Swagelok-type housing (Figure 9). The organic 
electrode was composed of 60 % active material, 30 % Printex carbon black, and 10 % PTFE binder. 
The used electrolyte was based on the combination of Mg(TFSI)2 and MgCl2 salts in DME solvent (6). 
The electrochemical characterization was performed using galvanostatic cycling with a defined 
potential limitation. Two different active materials were utilized: anthraquinone-based poly 
(anthraquinonyl sulfide)-PAQS and benzoquinone-based poly (hydroquinonyl-benzoquinonyl 
sulfide)-PHBQS. Both compounds operate through the reduction of carbonyl into an alkoxy group 
(Figure 9 (7). 

 
 

 
Figure 9. Used Swagelok cell setup (top) and proposed electrochemical mechanism of PAQS (bottom left) 
and PHBQS (bottom right) 
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Machine learning (ML) potentials are revolutionizing computational chemistry by predicting 
interatomic energies and forces, accelerating atomic structure optimization, and molecular 
dynamics simulations. This opens doors for property and structure prediction, reaction analysis, and 
materials discovery. However, unreliable results can occur without a reliable assessment of 
prediction confidence. Uncertainty quantification (UQ) methods address this issue by enhancing the 
robustness and reliability of ML potentials. 

The pathway towards transferability on the experimental side is complex due to the fact that battery 
technology involves a myriad of parameters, and the electrode and electrolyte components do have 
compatibility issues as well as interdependencies. A plan was defined to generate experimental data 
starting from the BIG-MAP standard Li-ion technology and gradually moving to new chemistries, 
keeping as many parameters as possible constant.  Yet, changing a single parameter at a time is not 
possible, and compromises have to be achieved.   

The positive electrode, LiNiO2, was kept, as it has a layered structure prone to intercalation of 
diverse species, and isostructural compounds with Na, K, or even Ca instead of Li are known (1,2). 
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After the first charge, which involves full oxidation and extraction of the Li+ ions from the crystal 
structure, one could expect that other cations present in the electrolyte could intercalate instead. 
On the negative side, the situation is more complex, as graphite is known not to intercalate naked 
Na+ ions. Thus, a common activated carbon negative electrode was used in all tests. Note that the 
redox mechanism is not faradaic but capacitive, and hence, it has to be ensured that it is present in 
a large excess for suitable capacity balancing of the cell. In addition, since its redox potential changes 
significantly with the state of charge, using a three-electrode setup cell was compulsory to assess 
its behavior, and modification of voltage limits was needed.  With respect to the electrolyte, the 
initial plan was to use ATFSI or B(TFSI)2 for A=Li, Na, K or B=Mg, Ca as salts in order to have a common 
anion and use a single high dielectric constant solvent to minimize solubility issues.  Yet, this came 
with the associated well-known problem of TFSI not passivating the Al current collector. Thus, 
corrosion tests were carried out, and a Ti current collector was selected instead.  New laminated 
electrodes were prepared on Ti, but adhesion problems induced a significant performance 
degradation, even in the case of Li.  

A contingency plan was then designed to focus only on monovalent charge carrier ions (Li, Na, K) 
and keep the electrolyte formulation as 1M APF6 in EC/EMC, testing LiNiO2 electrodes cast on Al vs. 
activated carbon counter electrodes in three-electrode cells. The results of cycling at C/10 can be 
seen in Figure 10. Capacity fading is significant, even in the case of Li, as a result of a non-optimized 
setup and seen to be larger in the case of KPF6.   

Figure 10.  Capacity vs. cycle number for three identical Swagelok cells using LiNiO2 on Al as working 
electrode, activated carbon as counter electrode (capacity excess >100%), and a silver wire as quasi 
reference electrode.  Electrolyte composition is depicted, the amount present in the cell being 300 µl. 
 
Operando X-ray diffraction experiments were carried out at ALBA synchrotron (MSPD beamline), 
which enabled following the first three cycles for all cells in Figure 11 are depicted the patterns at 
the end of oxidation and at the end of reduction where appearance of peaks at low angles can be 
seen for Na and K, which confirm its involvement in the redox mechanism, despite contribution of 
the Li+ present in the electrolyte after 1st oxidation (calculated to be 14 %) cannot be excluded. 
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 Figure 11. Comparison of operando X-ray diffraction patterns taken at ALBA MSPD beamlines on 
LiNiO2//activated carbon cells using Li, Na, and K electrolytes where the peaks at low angles appear derived 
from the intercalation of large size cations in the layered LiNiO2 structure. 
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We have explored the electrolyte systems, including NaPF6 and Mg(ClO4)2, in the solvent mixture 
of EC/EMC = 3:7 (LP57), beyond Li-ion batteries with LiPF6. LiPF6 is a widely employed electrolyte 
in Li-ion batteries, valued for its high ionic conductivity and electrochemical stability. Nevertheless, 
challenges such as susceptibility to moisture and thermal instability exist. Recent research indicates 
that augmenting LiPF6 electrolytes with specific solvents and co-solvents can enhance their 
performance. To advance the understanding of LiPF6 in solvents, including the solvation properties 
of metal cations, is essential for optimizing its performance and exploring upgraded or alternative 
electrolytes. This knowledge is not only applicable to Li-ion batteries but also holds significance for 
Na and Mg batteries, necessitating a comprehensive exploration of properties in reference to Li 
cations. 

We conducted atomic-scale simulations using ab initio molecular dynamics (AIMD) for three distinct 
systems featuring Li, Na, and Mg cations. The aim of these simulations was to delve into the 
solvation properties of metal cations, offering valuable insights into the diffusion movement of 
cations within widely used electrolytes. Each system was subjected to AIMD simulations, generating 
trajectories of at least 20 picoseconds (40000 steps with a time step of 0.5 fs). Subsequently, these 
trajectories were employed as the input dataset for active learning, a methodology designed to 
accelerate molecular dynamics simulations. 
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This approach enables us to leverage the information gathered during the initial simulations, 
optimizing the efficiency of subsequent simulations. By employing active learning, we seek to 
enhance our understanding of the intricate dynamics and interactions within electrolytes containing 
Li, Na, and Mg cations. The ultimate goal is to contribute to the development of improved electrolyte 
formulations and advance the performance of batteries, considering the unique challenges 
associated with each metal cation. 

 

 
Figure 12. (a) Simulation model of LiPF6; (b) Energy fluctuations with Li solvation (inserted). 

 
 

In the case of LiPF6, as illustrated in Figure 12, the dynamic trajectory reveals a separation between 
the Li cation and PF6 anion (Figure 12a). Throughout the 20 ps AIMD simulations, the system 
energies exhibit notable stability (Figure 1b). The Li solvation structure, intricately involved in this 
stability, is detailed in Figure 12b, showcasing a fourfold Li-O coordination between the Li cation 
and the surrounding solvents, which include 1 ethylene carbonate (1EC) and 3 ethyl methyl 
carbonate (3EMC). This observed coordination pattern provides crucial insights into the solvation 
dynamics of Li cations within the LiPF6 electrolyte. The stable trajectory and well-defined solvation 
structure contribute to understanding the complex interplay between Li cations and electrolyte 
components. Such detailed analyses are instrumental in refining our comprehension of electrolyte 
behavior guiding efforts to enhance battery performance and reliability. 
 

 
Figure 13. (a) Simulation model of NaPF6; (b) Energy fluctuations with Na solvation (inserted). 
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For NaPF6, Figure 13a displays the solvent box, illustrating the spatial arrangement of Na and PF6 
molecules amidst the surrounding environment. In Figure 13b, energy fluctuations associated with 
Na solvation structures are depicted over time. This figure provides a comprehensive view of the 
dynamic interactions within the NaPF6 system, focusing on the nuanced behavior of the Na+ ion. 
The inset image in Figure 13b offers a detailed perspective on the coordination of the Na+ ion, 
revealing a network of six Na-O bonds (2EC and 3EMC). This coordination pattern is essential to 
understanding the microscopic solvation structure, a critical factor in electrolyte design. Recent 
studies have highlighted the significance of the weak coulombic interaction between PF6 and Na, 
suggesting its role in promoting the transport number of Na+ ions in bulk liquid and influencing Na 
storage kinetics. These findings contribute valuable insights to the ongoing efforts aimed at 
optimizing electrolyte formulations for enhanced performance in sodium-based energy storage 
systems. 
 

 
Figure 14. (a) Simulation model of Mg(ClO4)2. (b) Energy fluctuations with Mg solvation (inserted). 

 
For Mg(ClO4)2, Figure 14 presents both the structural arrangement and energy fluctuations 
associated with Mg solvation structures. The solvation box in Figure 14a illustrates the spatial 
configuration of ions and molecules featuring ClO4 and Mg. In Figure 14b, the dynamic nature of 
solvation structures is revealed through energy fluctuations over time. Notably, these structures 
demonstrate stability over the 20 ps molecular dynamic trajectories. Delving into the microscopic 
solvation structure, as depicted in the inset of Figure 14b, Mg2+ is found to be stabilized by six Mg-
O coordination bonds involving 2EC and 3EMC, a coordination pattern akin to Na cations. Recent 
studies have emphasized the efficacy of a cooperative solvation/surface engineering approach in 
achieving reversible Mg plating/stripping within conventional carbonate electrolytes. These insights 
contribute to the ongoing exploration of strategies for optimizing Mg-based energy storage systems. 
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Figure 15. ML-MD temperature and energy fluctuations in NaPF6 system for iteration 0 (a and b) and 
interaction 3 (c and d). 
 
Based on the previously collected AIMD dataset, active learning workflows can accelerate molecular 
dynamics simulations and provide a better/more accurate understanding of electrolyte interactions. 
For the Na-PF6 system, Figure 15 shows the temperature and total energy analysis in Figures 15a 
and 15b for machine-learning molecular dynamics in iteration 0 and Figures 15c and 15d for 
iteration 3. It appears that iteration 3 is more accurate and efficient since every iteration of graph 
neural network (GNN) training gives better results about molecular dynamics. Figures 4a and 4b 
show a more erratic pattern, indicating less stability in temperature and energy levels at iteration 0. 
However, as seen in Figures 15c and 15d, there is a noticeable reduction in fluctuations by iteration 
3, showcasing enhanced accuracy and efficiency due to the iterative training of the GNN. It also 
shows that the molecular dynamics can be largely accelerated where 2 ns trajectories can be 
obtained within two days, which is impossible/impractical for AIMD simulations. This improvement 
underscores the capability of GNNs to refine molecular dynamics predictions with each training 
cycle. We will continue this work on Na and Mg ion batteries to help with electrolyte design. 

Utilizing the previously collected AIMD dataset, the active learning workflow significantly 
accelerates molecular dynamics simulations, providing a more nuanced and accurate understanding 
of electrolyte interactions. Focusing on the Na-PF6 system, Figure 4 presents a temperature and 
total energy analysis in Figures 15a and 15b for machine-learning molecular dynamics in iteration 0 
and in Figures 15c and 15d for iteration 3. In the initial iteration (iteration 0), Figures 15a and 15b 
depict a more erratic pattern, suggesting less stability in temperature and energy levels. However, 
as the graph neural network (GNN) undergoes iterative training, iteration 3 demonstrates enhanced 
accuracy and efficiency, with a noticeable reduction in fluctuations, as illustrated in Figures 15c and 
15d. This iterative refinement highlights the capability of GNNs to improve molecular dynamics 
predictions with each training cycle. 

Furthermore, the results indicate a substantial acceleration of molecular dynamics, allowing 
the generation of 2 ns trajectories within two days. This represents a significant improvement over 
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the time-consuming nature of AIMD simulations, emphasizing the practicality and efficiency of the 
GNN approach. These advancements reinforce the potential of GNNs in refining molecular dynamics 
predictions and underscore their role in advancing electrolyte design. Our ongoing work continues 
and extends to Na and Mg ion batteries, contributing to the broader understanding of electrolyte 
behavior for improved battery performance. 


