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ABSTRACT

Today, energy production and transport are evolving fast to meet challenging environmental targets
and growing demand. The Achilles’ heel is energy storage, which is incapable of providing both low-
cost and high-performance solutions. The answer is not a simple evolution of existing batteries but
disruptive technologies that must be discovered fast. The BIG-MAP vision is to develop a modular,
closed-loop infrastructure and methodology to bridge physical insights and data-driven approaches
to accelerate the discovery of sustainable battery chemistries and technologies. BIG-MAP’s strategy
is to integrate machine learning cohesively, computer simulations, and Al-orchestrated experiments
and synthesis to accelerate battery materials discovery and optimization. The project will be a lever
to create the infrastructural backbone of a versatile and chemistry-neutral European Materials
Acceleration Platform, capable of reaching a 10-fold increase in the discovery rate of novel battery
materials and interfaces.

This deliverable, included in the WP 1 ‘Project management, education, exploitation, and outreach’,
aims at reporting on ‘D1.10 - Proceedings from Early Stage Research Seminar’. One of the main
objectives of the WP1 is to create and promote a dissemination and training strategy for accelerated
Al-based materials discovery to different groups of stakeholders throughout the whole battery chain
value and to ensure high visibility and awareness for the project outcome by selecting the right type
of communication channels and timing. In this regard, 2022 BIG-MAP has put in place a series of Al
workshops to train young researchers in Al development. Specifically, this deliverable reports on
the 1st BIG-MAP Al workshop organized by DTU on January 24-25t.
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1. Introduction and purpose

BATTERY 2030+ projects (especially BIG-MAP) target Al toolkits to accelerate the development of
new sustainable high-performance batteries. As these models are being developed, the aim is to
continually train the BATTERY 2030+ members in effectively using those and integrating Al models
in their research practice. To that goal, BIG-MAP has launched a series of Al workshops where young
researchers involved in Al development train others through lectures and hands-on tutorials. The
first BIG-MAP Al Workshop was organised on January 24-25% as a two-day online event, and it
counted with the participation of more than 90 attendees.

2. Organisation

Arghya Bhowmik from DTU was the person responsible for the organisation of this workshop as
WP11 lead, with the administrative support from Anne Heglingegard, who is also from DTU. This
workshop was promoted among the BIG-MAP community, and it was shared with the BATTERY
2030+ as well. The event had two main parts: the morning session included lectures imparted by
the different experts. In the afternoon, participants were divided into smaller groups for a more
practical exercise. The event was held mainly over Zoom but the afternoon session combined Zoom
with Slack channels, which allowed participants to chat and even call to prepare the homework.

3. Registration and attendance

Among researchers affiliated with BATTERY 2030+ projects (BIG-MAP, HIDDEN, SPARTACUS,
SENSIBAT, BAT4EVER), 114 members attended the workshop (with observed peak simultaneous 87
members being online) covering all seniority levels from graduate students to senior professors.
Uniquely, the researchers performed the teaching and training — PhDs and postdocs while
professors played the role of moderators and teaching assistants.

Registration by project

4

® ARTISTIC = HIDDEN = SPARTACUS = BAT4EVER = SENSIBAT = BIG-MAP
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4. Content and programme

The 1st workshop (January 2022 edition) was conducted online on 24th and 25th January 2022. In
the morning, there were three oral presentations in a single track attended by all. After lunch, three
parallel hands-on sessions were executed by respective oral presenters and additional tutors. In the
afternoon, people are divided into three groups to learn one tool in-depth and how to use it. Each
oral presentation was a 30-40 min lecture followed by a discussion totalling 60 min.

Following topics were covered:

(a) loan-Bogdan Magdau (Cambridge University) Machine learning potentials. For more information,
see Annex 1.

(b) Marc Duquesnoy (Université de Picardie Jules Verne) Al applied to battery manufacturing
mesoscale data. For more information see Annex 2.

(c) Jonas Busk (Technical University of Denmark) Uncertainty and sensitivity with surrogate models.
For more information see Annex 3.

(d) Eibar Flores (Technical University of Denmark) Discovering governing equations from data with
Al. For more information, see Annex 4.

(e) Alexander Sougaard Tygesen (Technical University of Denmark) Multiscale modelling of battery
electrodes using DFT and Cluster Expansion. For more information, see Annex 5.

(f) Fuzhan Rahmanian (Karlsruhe Institute of Technology) Orchestrating distributed materials
acceleration platforms. For more information, see Annex 6.

5. Feedback

Disregarding positive feedback on usefulness etc., the main constructive feedback was — (a) having
a handout that lists all requirements for the workshops beforehand would help save software set
up time (b) having serial workshops spread over days so that people can attend many.

6. Conclusion

One of the main objectives of the BIG-MAP WP1 ‘Project management, education, exploitation, and
outreach’ is to create and promote a dissemination and training strategy for accelerated Al-based
materials discovery to different groups of stakeholders throughout the whole battery chain value
and to ensure high visibility and awareness for the project outcome by selecting the right type of
communication channels and timing. By organising this workshop, BIG-MAP contributed to a wider
and more efficient use and integration of Al models in the research practice of the different projects
coordinated by BATTERY 2030+
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Annex - Presentations used in the Al Workshop

1) Machine learning potentials

B UNIVERSITY OF
¥ CAMBRIDGE

Machine Learning Potentials
Challenges in EC/EMC Binary Solvent

loan-Bogdan Magdau

Department of Engineering

24 January 2022 BIG-MAP Al Workshop

The Case of ML in BIG MAP

Battery environment: Microcosm of Chemical Physics
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Gaussian Approximation Potential (GAP)

Kernel Model (Gaussian Process Regression):
Similarity Kernel

T
F®) = ) dKpp) e

K(p,ps) = (- ps)°

{: Kernel power (nonlinearity)
ps: Sparse Point (selected environments: basis)
p: descriptor of atomic environments: Smooth Overlap of Atomic Positions (SOAP)

Volker L. Deringer, Albert P. Bartok, Noam Bernstein, David M. Wilkins, Michele Ceriotti and Gabor Csanyi
Chem. Rev. 2021,121,16,10073-10141

rning Potentials: EC/EM

Symmetries of SOAP

permutational invariance:  p(r)) = p(ro;))
translational invariance: p(r) =pr;+T)

rotational invariance: p(r) =p[RTy)

The properties F, we are fitting, have similar invariances:
Fr = Fp@) = F(p(R) = F(Rr)

therefore this choice of descriptor makes fitting significantly easier
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ML Interatomic Potentials from Ab Initio Data

NN Models:  h()
Linear Models:

F(p) = ) dsbs(p) p
Z —> F(p)

W”

Kernel Models:

F®) = ) dK(pp)

—>

Mathematical functions: input atomic environments p and output observables
F(p) (energies, forces, stresses, dipoles, polarizabilities)

Learning: use train set of {p, F(p)} to determine ds, ps, w;; etc

ogdan Magdau

Smooth Overlap of Atomic Positions (SOAP)

smooth atomic density for each atom i of species a:
—|r—r
) = Zs e (Tl) Feutri > Teu)
expand into radial and spherical harmonics basis:
P = D el Ra (i)

nim

obtain power spectrum (SOAP descriptor):

iaa’

p=pis - Zci“ P
it = T L ‘nlm Cn’ i

loan-Bogdan Magdau 24/01/2022

GAP Fitting (Afternoon Tutorial)

Machine Learning Potentials: EC/EMC Solvent

We solve the model by minimizing the loss:

Ns
L= Z [Fap initio = Fear(@)]* + 0 Z dsK (ps, pgr)dy
.S'

data E

Important hyper-parameters:

a:  regularization parameter — reduces the risk of overfitting

Ng: sparse points — number of distinct envi ies used as
Nmax Lmax: resolution of radial / spherical harmonics basis

a,: width of Gaussians placed on atoms, width of Gaussian radial basis
Teur: NEighborhood cut-off for the atomic environment

EC/EMC Solvent

loan-Bogdan Magdéu Machine Learning Potent
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Learning Potentials: EC/EMC Solvent
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The Density Problem: Possible Issues

liquid config 'A — + liquid density collapses
OPLS equilibrium o mogat + bubble formation

0
e )
OPLS configs not representative for true PES
Model pathologies must be included in training
Diversity of molecular compositions matters

Intra- / Inter- difference in scale and dimensionality

loan-Bogd:
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> scale the volume with frozen molecules =

Volume Scan

loan-Bogdan Magdau Machine Learning Potentials: EC/EMC Solvent
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Thank you for your attention! Join the GAP fitting tutorial in the afternoon!
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Testing 33:66 at different temperatures:
GAP (10) +SM + VS, GAP (11)

- reproduces the entire E(V) curve
- still some oscilatory behavior

loan-Bogdan Magdau

Testing 48 Molecules GAP-MD

Testing 33:66 at different temperatures:

Unphysical density fluctuations 500K: shallower E(V). Not improved by iterative training.

Machine Learning Potentials: EC/EMC Solvent

24/01/2022
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2) Al applied to battery manufacturing mesoscale data

15t Al BIG-MAP Workshop

Marc Duquesnoy

Improving Li-ion battery (LIBs) requires a major focus on manufacturing process optimization. In this
multi-variable problem, the analysis of experimental and synthetic datasets is crucial to unravel the
dependencies between manufacturing parameters and countless electrode properties directly
related to electrochemical performances, as demonstrated by the ARTISTIC Project!. In this
presentation, | demonstrated the application of Artificial Intelligence (Al) to first automatically
extract meaningful informations from experimental data to enlarge the manufacturing process
knowledge?, and second to develop Al tools bypassing physics-based models calculations to fast
predict simulation results, leading to a drastic reduction of the computational cost3. The first study
case was the application of un/supervised Machine Learning (ML) algorithms to automatically assess
heterogenous coated electrodes based on mass loading and thickness measurements generated in
the context of the ALISTORE-ERI Project. Also, | demonstrated in another study case the interest of
functional data analysis to study the electrode slurry viscosity from mechanistic simulations, whose
main goal is to mimic the manufacturing steps through 3D electrodes generation®. We took
advantage of such a theoretical presentation in the afternoon to proceed to a training session with
students on different experimental and synthetic datasets. The latter enabled students to have
practical applications of the detailed ML algorithms on different types of fabrication parameters,
from the slurry formulation to the calendering step. Lastly, we talked about the setting up of
predictive ML models to provide to students an accurate approach to train supervised regression
models, with diverse well-known methods.

1 Duquesnoy, M. Lombardo, T., Chouchane, M., Primo, E. N., Franco, A. A. (2020) Data-Driven Assessment of Electrode
Calendering Process by Combining Experimental Results, In Silico Mesostructures Generation and Machine Learning.
Journal of Power Sources. 480, 229103

2 Duquesnoy, M., Boyano, |., Ganborena, L., Cereijo, P., Ayerbe, E., Franco, A. A. (2020). Machine Learning-Based
Assessment of the Impact of the Manufacturing Process on Battery Electrode Heterogeneity. Energy & Al. 100090

3 Duquesnoy, M., Lombardo, T., Caro, F., Haudiquez, F., Ngandjong, A. C., Xu, J., ... Franco, A. A. (2022). Functional
Data-Driven Framework for Fast Forecasting of Electrode Slurry Rheology Simulated by Molecular Dynamics. ArXiv
preprint arXiv:2201.04394.

4Lombardo, T. Caro, F., Ngandjong A. C., Hook J-B., Duquesnoy, M. Delepine, J-C., Ponchelet, A., Doison, S., Franco, A.
A. (2022) Batteries & Supercaps. !
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3) Uncertainty and sensitivity with surrogate models
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Overview =
 Part I: Motivation and background
* What is sensitivity analysis?
* Different methods.
o Local vs. global sensitivity analysis. .
© Sensitivity analysis with surrogate models Part |: Motivation and back
® Part |I: Sensitivity analysis for P2D battery degradation model
® Data collection.
® Model checking.
o Preliminary results
* Introduction to exercises
3 DTU Enerey Sensitviy anslyss ith surrogate models 2412022
BATTERY BATTERY
2030 DJE o 2030 @ Ely
What is sensitivity analysis? B [ =4 Sensitivity analysis in BIG-MAP E R =4
“The study of how uncertainty in the output of a © Multi-scale modelling: Models feed into each other and uncertainty accumulates down stream.
system can be allocated to different sources of
uncertainty in its inputs.” .
Model of interest
A P2D battery model)
* Applications:
> %
© Identify inputs that have no significant effect on the X Yo c
output and can therefore be fixed or removed to X N
simplify the system >
© Analyse the effect of the inputs on the output to B Inputs Outputs
better understand the system.
® |dentify inputs that cause significant uncertainty in the
output in order to reduce uncertainty in the system.  Sensitivity analysis can help reduce uncertainty in the overall system.
R ety s wih sumogee o 2612022 6 DTU Energy Seasiivity analss ith surrogate models 2412022
BATTERY BATTERY
. . 2030 @ gw 2030 @ EIH
Sensitivity analysis methods - rtvE =3 Sensitivity analysis methods - e S 3

© Methods in increasing order of complexity / evaluation cost
* Screening: Coarse sorting of the most influential inputs / identify non-influential inputs.
o Useful for large number of inputs
® Vary each input one at a time and observe effect on output (one-at-a-time (OAT) method).
* Simplify the model by ignoring unimportant inputs.
* Importance measures: Compute feature importance or sensitivity indices.
® Measure correlations of sampled input-output pairs.
® Fit a simple model and analyse model coefficients (linear regression, LASSO, random forest)
* Deep exploration: Measure effects of inputs along their entire range of variation
* Visual inspection of input-output pairs.
* Fit a surrogate model that fits the data and has good prediction capabilities.
® Analyse the model and use it to generate more data (e.g. predict unobserved inputs).

looss B, Lamsitrs P. (2015) A Review on Global Sensitvity Anslyss Methods. In: Delling G., Maloni C. (sde) Uncertsinty Management in Simulstion-Optimization
of Complex Systems. Operations Research, Computer Science Interfaces Seriss, vol 50. Springer, Boston, MA. hitps://doi.org, 10 1007 /078-14805-547-6_5

o Local vs. global sensitivity analysis methods.

* Local sensitivity analysis is concerned with how a single set of input parameters affects the output.
 Apply small perturbations of inputs around their nominal value (one-at-a-time (OAT) method)
 Estimate the partial derivative of an output wrt. the inputs at a specific point.
® (Does not consider how the system behaves in other regions of input space.)

* Global sensitivity analysis aims to understand the behaviour of the overall system.
© Overcome limitations of local methods by considering the whole range of variation of the inputs.
® Can be achieved by fitting a (cheap) surrogate model on observed input-output pairs and

analysing the surrogate model instead of the original system
*® The surrogate model can then be used for getting local insights as well

locss B., Lemsitre P. (2015) A Review on Globsl Se
of Complex Systems. Operations Research/Computar

iy Analysis Methods. In: Dellno G., Meloni C. (eds) Uncertainty Management in Simulation-Optimization
fence Interfaces Seriss, vol 59. Springer, Boston. MA. https: /doi.org/ 10,1007 /075- 1. 4899-T547-5. 5

P Semsitiviy sy with surogete models 26120 8 DTU Energy Sensiivity analyss with surogate models 2412022
BATTERY DTU BATTERY DTU

. L 2030 - . L 2030 =
Sensitivity analysis with surrogate models - o e Sensitivity analysis with surrogate models - O = 3

® Linear regression model:

— true function

ey chacvations
© y(x) = WTX + e where € ~ N(0,0%) 2 redction

o Or p(ylx.0) = N'(wT'x,0%) uncertainty (2%5td)

* Normalisation of the input data enables direct
comparison of the regression weights.

® Feature importance can be measured by the size
of the regression weights or the absolute
t-statistic: tq = mean(wq)/std(wy)

® Test linear hypothesis.

® Pros: Simple to use and easy to interpret.
® Cons: Linear. Not very useful for local sensitivity
analysis as gradients are the same everywhere.

® The linear model can serve as a useful baseline!

9 DTU Ensrey Sensitvity analysis with surrogate models 2412022

® Gaussian process (GP) regression is a popular choice

of surrogate model for sensitivity analysis [ re——
. . noisy observations
o f ~ GP(m(x), k(x,X')), where m(x) is the 20 S e
mean function and k(x,x') is the covariance 15 postrr samples
uncertainty (2's
function also known as the kernel >
® Often used with the squared exponential kernel: 10
2 z—a')? .
ksp(z,a') = o} exp (— 555, where o is o /
7
the variance parameter and I  is the length scale o
parameter.
N o5
® Pros: Flexible and data efficient. Uncertainty
estimates. Differentiable with some kernels. 10
® Cons: Risk of overfitting. Expensive to fit large s
datasets (although there are sparse GPs) 00 02 0% 06 08 10

Carl Edward Rasmussen and Chris Willams, Gaussian Processes
for Machine Learning, the MIT Press, 2006

10 DTU Energy Sensitvity analysis with surogate models  24.1.2022
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Sensitivity analysis with surrogate models
© We want to measure the expected change in the
output as a function of the input features.

* Empirically computed as the root mean squared
derivative of the function f w.r.t. the inputs:

1L Of(xn)\2
N;( ahxw )

© Can be computed analytically for some kernels or
with automatic differentiation

Rasmussen PM, Madsen KH, Lund TE, Hansen LK. Visualization of nonlinear kernel
models in neurcimaging by sensivity maps. Neuroimage. 2011 Apr.55(3):1120-1131
DOI: 10,1016/ neurcimage 2010.12035. PMID: 21168511

K. Blix, G. Camps-Vall snd . Jenssen. “Gaussian Pracess Sensiivity Anshsi for
Oceanic Chlorophyll Estimation,” in IEEE Jounal of Selcted Topics in Applied Earth
bservations and Remote Sensing, vol. 10, no. 4, pp. 1266-1277, April 2017, doi
10.1100/JSTARS. 2016 2641583

25
— trve function

201 @ noisy observations
— prediction

. posterior samples

s uncertainty (2*std)
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1DTU Energy Sensihity anslysic vith surogate models 2412002
BATTERY DTU
538 =
Part | summary - some e
 “Sensitivity analysis is the study of how uncertainty in
the output of a system can be allocated to different
sources of uncertainty in its inputs.”
odelof nterest
 Applied to simplify, understand, or improve a system A | e
* Screening, importance, and exploration methods. J » C
« Local vs. global methods ‘ P ==
 Sensitivity analysis with surrogate models:
® Linear regression
 Gaussian process regression.
15 OTU Enery Semsichity by vith surrogsts madsls 24,1022

Sensitivity analysis for P2D battery degradation model -

© Sensitivity analysis recipe
® Understand the data

« Fit a simple baseline model
(Bayesian linear regression)

* Fit a more flexible nonlinear model
(Gaussian process regression).

© Sensitivity analysis of the model.

15 DTV Enersy

ATTER

®3C

=]
=
=

BG-var

"

Sensitivity analysis with surrogate models 2412022

BATTERY DU
2030 -
Sensitivity analysis with surrogate models - acur e

 Feature importance in GPs with Automatic Relevance Determination (ARD)
® Squared exponential kernel (RBF) with separate length scale parameter for each input
* Feature importance measured by inverse length scale.
 Has been shown to overestimate the importance of inputs with nonlinear effects
Paananen . Pironen J. Andersen MR, Vehtar A, Varisble selction for Gaussian processes via senstvity analyss of the posterior pedictive
distrbution. In The 22nd Incernatonsl Conference on Artifical Intlligence and Statstics 2010 Apr 11 (pp. 1743-1752). PULR
© Other methods for measuring feature importance

© Linear regression.
© LASSO (least absolute shrinkage and selection operator)
© Decision tree models (random forest).

« Sensitivity analysis with neural network surrogate model:

* Differentiable.
® Data hungry.

12 DTV Energy Senitvty analyss with surrogate models 2412022

Part |l: Sensitivity analysis for P2D battery degradation model

©
>
>
=
2
=
=
=

2030 e
Sensitivity analysis for P2D battery degradation model - P = 3
© The dataset consists of inputs and outputs of a battery degradation model. More specifically, a
pseudo-two-dimensional (P2D) model configured to simulate the formation of the solid electrolyte
interphase (SEI) based on the reduction of the solvent near the surface of the negative electrode
during charging.
® The electrolyte considered in the model is a mixture of ethyl carbonate/ethyl methyl carbonate
(EC/EMC) with LiPFy salt. Hence, we assume that main product forming the SEI layer is LiyCO3
and it is formed according to the reaction:
S42Lit 42 5P
® where S is the solvent species and P is the product of the reaction between the solvent ant the Li
ions. The growth of the SEI layer is assumed to be in one-dimension and to be controlled by the
kinetics of the reaction occurring at the interphase.
16 DI Enersy Sensithty amlysis vith surrogats models 2012022

BATTERY DTU
tivi ; : 2030 =
Sensitivity analysis for P2D battery degradation model - Bow e
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Table: Input parameters of P2D battery degradation model.

BATTERY
2030 @ EIE
oM

Sensitivity analysis for P2D battery degradation model e

® Sets of inputs were sampled uniformly
at random within the input ranges.

® Then the P2D model was used to
compute the output labels of each row.
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Demonstration of interactive sensitivity analysis

Introduction to exercises

Available at:

github.com/BIG-MAP /sensitivity_analysis_tutorial

2 DU Enersy

Part Il summary

 Demonstrated sensitivity analysis on a
practical example of a P2D battery
degradation model.

* Data collection
© Model checking.
© Preliminary results.

 Join the exercise session if you want to try
out this analysis!

2 DTU Energy

mean prodicton

Sensitivity analysis with surrogate models

e
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4) Discovering governing equations from data with Al

Engineering better performing Li-ion battery electrolytes requires balancing compromises among
multiple desirable properties, where the electrolyte conductivity is critical. In this multi-objective
optimization problem, a fast and accurate model describing ionic transport on practical electrolyte
formulations is highly desired. In this work, we apply symbolic regression to find a suitable surrogate
model of the conductivity of a LiPF6-based electrolyte, using a large experimental dataset from high-
throughput conductivity measurements. We demonstrate the emergence of an expression
outstanding for being simple, accurate, consistent, and generalizable. Notably, even if found from a
purely statistical approach, the expression inherits functional aspects from established
thermodynamic laws, indicating our model to be grounded on the physical mechanisms
underpinning electrolyte transport. Our approach demonstrates the potential of using machine
learning to find accurate and physically-sound surrogate models in complex systems without
established physico-chemical theories.

12
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5) Multiscale modelling of battery electrodes using DFT and Cluster Expansion

Modeling battery electrode materials using ab initio methods is just the first step of the way towards
simulating the performance. In many cases, ab initio is too restricted by the length scales it allows.
Multiscale methods allow for bridging simulations at different length scales. In the case of the
Cluster Expansion method, we can simulate disordered materials starting from ab initio calculations
which are limited to a few hundred atoms, and venture into the thousands and even millions of
atoms. This allows us to explore a completely different set of properties, which only manifest on the
longer length scales.

13
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6) Orchestrating distributed materials acceleration platform

HELIHOLTZ
[ INSTITUTE
un

Electr

BIGMAP 1st Al-Workshop

Orchestrating distributed
materials acceleration
platform

Fuzhan Rahmanian
PhD Candidate

e of Technology (KIT), Insti

Hiv= KT

Material Acceleration Platforms (MAPs)
« Acceleration through complexity of
materials optimization

« Necessity for orchestrating distributed
research instruments

3 218202

Fuzhan Rahmanian Applied Electrochemistry, HIU & IPC, KIT

Hivs T

Integration is the precursor for acceleration

ul 1
e
-, ] 1

1) 1

Inverse computational
designof batery materia

Synthesis

Characterization

Data science

@,

Applied Electrochemisiry, HIU & IPC, KIT

Manufacturing &

Databases and Novel battery
comi materials & interfaces

Automation
datainfrastructure
Al-orchestrated

discovery

Multiscale simulations
and physical models

H
L

tonomous roborics

Kor materials \
1

|

Integration

Operando, characterization of
battery interfaces

Edstrom, K. (2020). Battery 2030+ roadmap.

2 2ns2022 Fuzhan Rahmanian

v

Limitation in the current MAP

« Capability of autonomous workflows on only single computer instrument pairing

Complex software dependencies & heavyweight implementation

Incompatibility of some platforms with the open-source development of

version-controlled software

Applied Electrochemistry, HIU & IPC, KIT

Lack of data acquisition beyond FAIR guidelines.

Lack of orchestrating multiple instruments

4 2162022 Fuzhan Rahmanian

Hierarchical Experimental Laboratory Automation and
Orchestration framework (HELAO)

<(( ))) Orchestrator
192.16.52.3:1408

Hivz NCIT

Measure CV
[} (]

.
Actions %%E EEE %%%

Dispensation
I Language: Python

Communication: FastAP|

}

Design: Hierarchical

Motor Autolab
) x|
Drivers ] =

Ratmarian, . Flouers, J, Guevara, D, Richtr, M. Fiehiner, M. Grogoie, J, M. & Siin, H S, (2021, Enabing modular autonoms feedback oops in mateias scionce

the natural
Fuzhan Rahmanian

5 2152022 Applied Electrochemistry. HIU & IPC, KIT

Hiv= KT

Why web-server communications? Why API?

‘ Communication between various software components‘

Request
(HTTP)

Host , Port

Response
Raw data format
(JSON, XML)

6 2152022 Fuzhan Rahmanian Applied Electiochemistry, HIU & IPC, KIT

- XIT

Why web-server communications? Why API?

Asynchronous Web Server

Immediate response to the API
call

Ease in sharing data

Accessibility by any programming language
Multiple async calls will be
completed in some order and not
at the same time

Reusability of devices across laboratories

7 2082022 Fuzhan Rahmanian Applied Electiochemistry, HIU & IPC, KIT

\‘HI glu\;fl‘\

Why FASTAPI and how it works?

SIT

Automatic data validation

Auto documentation

O FastAPI

Extremely fast even with multithreading

8 2152022 Fuzhan Rehmanian Applied Electrochemistry, HIU & IPC, KIT

Hiv= IT

What can FASTAPI do forus ? @ FastAP|

Installation requirement: fastapi, uvicorn, pydantic

Pydantic: data validation by using type annotation

Creates request with an endpoint GET : ask for something to do
POST : creates something new
PUT: update/modify something existed

DELETE: remove something

s 2152022 Fuzhan Rahmanian ‘Applied Elsctrochemistry, HIU & IPC, KIT

Tutorial 2

HIUE

What can FASTAPI do for us? An Example

Create your app

Create your get request Create an endpoint

Define return request

Calling Devices or apps: =

+ Python’s build in “request” package —1

10 2152022

Fuzhan Rahmanian Applied Electiochemistry, HIU & IPC. KIT
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Hiv:= SKIT

What can FASTAPI do for us? An Example

Sequential Vs. Parallel

Mot Analysi
Thread 1 pﬁr —»I. gi —_ !MQ |
i J Blocking
¥ 1 Asyne & await
Motor Measure| Analysis| O FastAPI
Thread 1 ﬁ IMQ
Motor Measure| Analysis}
ez | (@ o= | —> =
t J

1 25002 Fuzhan Rahmanian ‘Appiied Electrochemistry, HIU & IPC, KIT

HivE T

What can FASTAPI do forus ? @ FastAP|

Asimple live example: Our lab © A
Tutorial 1: st
- Show the basic functionality of FastAPI

- How to talk with several servers

- How to write an asynchronous server

BICAPlorchetoig oap o Tis o o rchesioing st el aceslersion o aze
spared for e DIG-HAP A1 ScooT el n Janusy 2028 b Fucha R s Jack Fosses (gt com

i

12 52022 Fuzhan Rahmanian Applied Electrochemisty, HIU & IPC, KIT

HIU:

How can we accelerate more ?
Active learning !

T

Rahmanian, . Fowers. . Guevara,D. Richr, M. Ficher, M, Grogoro. J. M. &
Stan 1.5 (2021) Enabina mosr autoromous foschack oops n mateals scisnce A
e Wrarcical experimantl abratory aomaten and rcastton

Heigo S Stein,Dan Guovara, Akt Shine, Ryan Jones, John M_Gogoi, Joo A Haber, Fnctonal magpng
vt mschanahs cusars o OER catass eros (G i Ta-Co-SF)0x composiion v ! Space., Mot
Foraons, 2015, DO 10 1030CANIEHK

13 2152022 Fuzhan Rahmanian Appiiod Electrochemistry, HIU & IPC, KIT

HIU ,m,j‘

ar

unsupervised learning
Not enough data

Active learning: Motivation

Supervised learning

Too much data to label

?

Active learning
Deep active learning *
Reinforcement learning
Deep reinforcement learning Gl
Semi-supervised learning

@o9
1 s

Fuzhan Rahmanian Applied Electrocheristry, HIU & IPC, KIT

HIU: ﬂ(IT

Active learning: How it works?

Unlabelled data
(whol search space)
i Uncertainty Measurement
Labelled data
(Knowedge about one.
‘experiment ' result) l

Select the next best experiment

Labelled the unlabelled data ¢E

15 218202 Fuzhan Rahmanian Applied Electrochemistry, HIU & IPC, KIT

HIUE

SIT

Active learning in laboratory experiments

Inference & Mach
— | otorence Uncertainty Measuremen
Labelled data |
(Knovide st one
‘experiment ’s result) l

Select the next best experiment

Labelled the unlabelled data ﬁ
‘experiment. <~
'hnﬁﬂon g; (@

‘Applied Electiochemisty, HIU & IPC, KIT

If next exp is in top
percentile

16 2152022 Fuzhan Rahmanian

{HIU

- AT

AL: How to sample?

Uncertainty sampling

Least confidence s(6,x) =1— méaxpg(ylx)
yey

Smallest margin 5(8,%) = po(Ym|%) = po(yuln)

Entropy 5(6,x) = =Xyey Po (¥]x) logpe (v]x)

2152022 Fuzhan Rahmanian ‘Applied Electrochenstry, HIU & IPC, KIT

Hivs KIT

AL: How to sample?

Uncertainty sampling

Least confidence s(6,x) = argmin (1 - mgxpg(ﬂx)) = argmax(pg(y|x))
yey

s(6,x,) =08 FCC BCC HCP
s(6,x,) =0.76 x 08 015 005
5(60.33) =045 x, 076 008 016

x; 045 035 02

18 2152022 Fuzhan Rehmanian Applied Elsctrochemistry, HIU & IPC, KIT

Hiv= T

AL: How to sample?

Uncertainty sampling

Smallest margin 5(8,x) = pg(ymx) = pe (u|)

s(8,x,) = 0.8—0.15 = 0.65 FCC  BCC HCP
s(8,x;,) = 0.74 —0.16 = 0.58 x 08 015 005
5(6,x3) = 0.45-0.35=0.1 =055 &/ TG0 oD TaE

ES 045 035 02

19 2152022 Fuzhan Rahmanian ‘Applied Electrochemisty, HIU & IPC, KIT

Hivz KT

AL: How to sample?

FCC BCC HCP
Uncertainty sampling =081 045005
Entropy 5(0,%) = = Xyey po(y1x) logpe (y|x) 2 076 0.08 0.16

x; 045 035 02

s(68,x,) = —0.8 x10g(0.8) — 0.15 = 10g(0.15) — 0.05 * log(0.05) = 0.266
s(8,x,) = —0.74 = 10g(0.74) — 0.08 = 10g(0.08) — 0.16 = log(0.16) = 0.319
$(8,x3) = —0.45 « 10g(0.45) — 0.35 * 10g(0.35) — 0.2 * 10g(0.2) = 0.455

This sampling can be overconfident | But is easy ! ‘

0 2152022 Fuzhen Refhmanian Applied Electrochemisty, HIU & IPC. KIT
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AT

HIU:

AL: How to sample?

Query By Committee

Train an ensemble of various models
Uncertainty can be measured based on votings

Optimization is more But

and does not reduce the expected error!

Variance reduction

‘ Optimization is successfull But expensive and sometimes difficult to get!

21 2152022 Fuzhan Rahmanian ‘Applied Electrocheistry, HIU & IPC, KIT

AL: How to sample?

More common for material science community -

Lower confidence Bound i A /\

f) =ap+(1-a)d? 0<a<1

x" = argmax(f(x))

Good when the objective function is unknown
Good for noisy measurement
Good when the whole search space evaluation is expensive

S Coears 0 W Yt ) & ko . Crie 1 OB
foee o Naratcity MRl Sete et Ty

hemica sence, 1110), 2696-2706
041, 46175,

2 2182022 Fuzhan Rahmanian Applied Electiochemistry, HIU & IPC, KIT

AL: How to sample?

Still a lot more .. PO, El, Thompson,

Choice of agf depends on the selected ML model

23 215202

Fuzhan Rehmanian

Applied Electrochenistry, HIU & IPC, KIT
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Active learning in laboratory experiments

Unlabelled data
(whole search space)
5  Inference & Machine ——>  Uncertainty Measurement
Learnin
Labelled data
(oeige abou ane
expenment s et 1

Select the next best experimen
Labelled the unlabelled data

If next exp is in top,

PHGEnllle 4—'
E 48

Appiied Electrochemistry, HIU & IPC, KIT

2 2152022

Fuzhan Rahmanian

Tutorial 3

HIU: g( 'l'

Supervised Machine Learning
Classification task: LR, DT, NB, RF, SVM, KNN, LDA, ...

Regression task: LR, NN, DT, SGD, Ensemble models,

Common python package: Scikit-learn

How to choose a right model ?

Type of data, statistical analysis, bias, tuning, P e
feature importance, ease of implementation,.. ntance

Tutorial 2&3:

- Example for writing machine learning model (i.e. RF and GP ) & how to hypertune.
- Write an active learning algorithm with different uncertainty sampling

2% 2ns2022

Fuzhan Rahmanian Applisd Electrochemistry, HIU & IPC, KIT

Accelerating experiments with active learning

Requirements: g 1

Automatic data analysis

ML algorithms

Data accessibility
(without human intervention)

« Possibility of parameter alteration for each experiment

Rt T ones, . Comars, . R, . P . Grgors, .1 s 2
o el parental bt Sursten a0 ihesea

2% 2152022 Fuzhan Rahmanian Applied Electrochemisty, HIU & IPC, KIT
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Accelerating experiments with active learning
Sequential Vs. Parallel

s s €5l

[Active Learmrlg

| w=zyem

Nt best experinent

1 bestaxperiment
(sdate theprc)

Thread 1 ‘ ‘ Analysis '
Parallel Ihread 3
Analysis
Thread 2 —_ @\
24 vesteermen
et iy
(e ey

27 2ns02 Fuzhan Rahmanian Applisd Electrochemisty, HIU & IPC. KIT

Hivs AT

Accelerating experiments with active learning heinivashe

Sequential Vs. Parallel

Actual hardware in the loop runs [
nstrament ~»
g
£
B 1 3
§
: _
g
Z - “
5
]
5 -
E
K £
) 20 40 60 80 100 .
Experiment number
» sz Fuzhan Retmanian Applied Eectochamisy, 11U & 1PG,KIT
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