

Battery Interface Genome - Materials Acceleration Platform

1

D7.4 – Report on Battery Interface Ontology
Case Study

VERSION

VERSION DATE

V1 31.08.2022

PROJECT INFORMATION

GRANT AGREEMENT NUMBER 957189
PROJECT FULL TITLE Battery Interface Genome - Materials Acceleration Platform

PROJECT ACRONYM BIG-MAP
START DATE OF THE PROJECT 1/9-2020
DURATION 3 years
CALL IDENTIFIER H2020-LC-BAT-2020-3
PROJECT WEBSITE big-map.eu

DELIVERABLE INFORMATION

WP NO. 7
WP LEADER SINTEF
CONTRIBUTING PARTNERS EPFL, DTU
NATURE Report
AUTHORS Simon Clark
CONTRIBUTORS Casper W Andersen, Jesper Friis, Francesca Lønstad Blekken
CONTRACTUAL DEADLINE 31.08.2022
DELIVERY DATE TO EC 31.08.2022
DISSEMINATION LEVEL (PU/CO) PU

ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957189. The
project is part of BATTERY 2030+, the large-scale European research initiative
for inventing the sustainable batteries of the future.

Battery Interface Genome - Materials Acceleration Platform

2

ABSTRACT
The objective of this deliverable is to demonstrate a working proof-of-concept for how the Battery
Interface Ontology (BattINFO) can be used to create semantically annotated battery data. Achieving
this objective means developing not only the ontology itself, but also the associated data models
and RDF triple mapping and querying infrastructure needed to perform practical actions on real
battery datasets. In this first use-case, we create battery cell metadata for a cell that has been
reported in the literature and link it with simulated time-series data obtained from the open-source
Battery Modelling Toolbox (BattMo). The resulting metadata are mapped to BattINFO terms using
RDF triples and saved in a triplestore. We demonstrate a simple semantic query of the triplestore
using SPARQL. The code for generating this use-case – along with future use-cases to be developed
in the BIG-MAP project - is publicly available on GitHub: https://github.com/BIG-
MAP/FAIRBatteryData

https://github.com/BIG-MAP/FAIRBatteryData
https://github.com/BIG-MAP/FAIRBatteryData

Battery Interface Genome - Materials Acceleration Platform

3

TABLE OF CONTENTS

1. INTRODUCTION ... 4

2. METHODS ... 4

2.1 BATTERY INTERFACE ONTOLOGY (BATTINFO) ... 4

2.2 DLITE .. 5

2.3 DATA SOURCES ... 5

2.4 USE-CASE REPOSITORY ... 6

3. FIRST USE-CASE ... 6

3.1 CREATE DLITE DATA MODELS .. 7

3.2 ASSIGN CELL DATA AND TIME-SERIES DATA TO DLITE INSTANCES ... 11

3.3 CREATE A TRIPLESTORE AND ADD MAPPING TRIPLES .. 17

3.4 QUERY THE TRIPLESTORE USING SPARQL ... 18

4. SUMMARY .. 19

REFERENCES ... 20

Battery Interface Genome - Materials Acceleration Platform

4

The world is generating more and more battery data every day. However, despite this abundance
of information, the battery community is using the available data to only a fraction of its full
potential. This is due largely to the challenges of working with heterogeneous data that comes from
different sources (e.g. machines, models, labs, companies, etc.). In the absence of clear community
guidelines, each source reports its data in its own format and may or may not include the
appropriate metadata needed to fully understand the context. As a result, the battery community
is losing valuable resources in the quest for new energy storage technologies.

The EU project BIG-MAP has developed the Battery Interface Ontology (BattINFO) to help address
this challenge [1]. BattINFO is a domain ontology for batteries and electrochemistry under the
umbrella of the top-level Elementary Multi-perspective Materials Ontology (EMMO). The purpose
of BattINFO is to provide a common community-wide conceptualization of batteries and their data
to fully enable data interoperability and automated machine reasoning about battery data.
BattINFO is structured as a machine-readable data model that describes batteries and their data as
a collection of concepts linked together by relations. Properties of battery data can then be mapped
to concepts in the ontology. For example, if you have two battery data sets – each with properties
that map to the same term in the ontology – a machine is then able to reason that because those
two properties are equivalent to a third concept, they are therefore equivalent to each other.
Ontological reasoning can go a step further and navigate the web of relationships connecting
concepts to identify dependencies that may not have been obvious otherwise.

The purpose of this deliverable is to create a first use case demonstrating a proof-of-concept for
how BattINFO can be used to enhance the battery data space. The selected use case will focus on
interpreting and post-processing time-series battery data (e.g. cell cycling data), which is one of the
most common types of data generated in the battery field. We will present the ontological concepts
necessary to describe both the data itself and the associated metadata for the cell. We use a tool
developed within the framework of EU data science research called DLite to create generic data
models that include the mappings to the BattINFO ontology. We can then create ontology-informed
functions to perform common operations and calculations on the data. As a result, we will
demonstrate the easy interoperability between datasets that were originally reported in different
formats. Finally, we will discuss next steps for further use case development.

In this section, we review the tools and methods used to create the case study.

2.1 Battery Interface Ontology (BattINFO)
BattINFO is a free, open-source domain ontology for batteries developed beneath the umbrella of
the top-level EMMO. It is available for download on github, using the following link:
https://github.com/BIG-MAP/BattINFO In this case study, we are working with version 0.3.0. The
domain ontology can be obtained by cloning the git repo using the command:

https://github.com/BIG-MAP/BattINFO

Battery Interface Genome - Materials Acceleration Platform

5

git clone https://github.com/BIG-MAP/BattINFO.git

There are two tools we recommend to explore and use the ontology. The first is the free tool
Protégé, developed by Stanford University. Protégé, provides an easy-to-use interface to explore
and edit terms in the ontology. It is available for download using the following link:
https://protege.stanford.edu/products.php#desktop-protege

The second tool we recommend is a python package for working with EMMO and its associated
domain ontologies called EMMOntoPy. It can be installed using the following command:

pip install EMMOntoPy

2.2 DLite
To create mappings between ontological terms and actual data sets, we use a lightweight data-
centric framework for semantic interoperability called DLite. DLite is a C implementation of the
SINTEF Open Framework and Tools (SOFT), which is a set of concepts and tools for how to efficiently
describe and work with scientific data.

If you are using Python, the easiest way to install DLite is with pip:

pip install DLite-Python

Note, currently only Linux versions for Python 3.7, 3.8, 3.9 and 3.10 are available. But Windows
versions will soon be available.

2.3 Data sources
There are a growing number of publicly available databases and simulation tools for battery data.
The online database https://www.batteryarchive.org/, collects open data sets describing the cycling
performance of many different types of Li-ion batteries. An example is shown in Figure 1. They
include some basic metadata descriptors for properties like electrode materials and form factor,
which are encoded in the entry name.

Figure 1. An example of battery time-series data, downloaded from BatteryArchive.org

https://protege.stanford.edu/products.php#desktop-protege
https://www.batteryarchive.org/

Battery Interface Genome - Materials Acceleration Platform

6

Other open-source simulation tools like PyBaMM, cideMod, and BattMo are becoming widely used
across both industry and research. Over the course of the BIG-MAP project, we intend to offer
support for annotating data from these and other public sources.

For this initial demonstrator use-case, we use cell data reported by Chen et al. in their well-
documented parameterization of cylindrical 21700 Li-ion battery cells [2]. This is combined with
time-series cell data simulated using the battery simulation software BattMo. The intention of this
use case is to demonstrate the workflow for annotating and transforming battery data. It is the
method – more than the actual data itself – that is the key component of this work.

The data used for the cell description can be found in the publication by Chen et al. [2]. The cell
simulation data can be obtained by executing the example runChem2020.m in the BattMo
repository: https://github.com/BattMoTeam/BattMo

2.4 Use-case repository
A public repository has been created on GitHub for the purpose of documenting FAIR battery data
use-cases supported by BattINFO. The repository can be accessed using the following link:

https://github.com/BIG-MAP/FAIRBatteryData

The code for the first use-case is included in this repository under the location:
examples/scripts/demo-1-createAnnotatedBatteryData.py. Further use-cases will be added and
documented as the BIG-MAP project progresses.

The selected first use-case is to annotate cell-level and time-series battery data with BattINFO.
Annotating data to ontology terms is achieved by defining semantic triples, which take the form:
subject, predicate, object. For example, if we wanted to map the cell voltage data from some battery
measurement (with a specific UUID) to the BattINFO term for cell voltage, we might define a triple
that takes the form:

BattINFO:CellVoltage map:mapsTo UUID#cell_voltage

In this example, the subject is the CellVoltage term defined in the BattINFO ontology, the predicate
is the mapsTo relation defined by the EMMO Mapping ontology, and the object is the cell_voltage
property of the measurement indicated by its specific UUID. While in this case the subject and the
predicate can be obtained from the relevant ontologies, we need an adequate data model to serve
as a basis for identifying the object of the triple. We achieve this by creating instances in DLite. DLite
instances are simple metadata that can be linked to or generated from ontologies. They provide
property fields that can be populated with data coming from standard sources such as csv, xlsx, json,
or data bases like Postgresql, etc. A conceptual overview of the layers linking raw data to ontology
terms is presented in Figure 2.

https://github.com/BattMoTeam/BattMo
https://github.com/BIG-MAP/FAIRBatteryData

Battery Interface Genome - Materials Acceleration Platform

7

Figure 2. Schematic overview of the layers used to link raw data to ontology terms. The figure shows an
example for raw data coming from a csv file, but data from many sources (e.g. JSON, SQL database, excel,
etc.) could be considered.

The following steps are undertaken to create the use case:

i. Create a DLite data models describing the battery and its associated time-series data.
ii. Assign cell data and read the time-series data from its raw file contents (*.csv).

iii. Instantiate a triplestore containing BattINFO triples and add triples mapping the data
iv. Query the triplestore using SPARQL

The details of each step are described in the following sub-sections.

3.1 Create DLite data models
DLite instances as the basis for ontology-based data interoperability. The first step in creating DLite
instances and collections is to establish a generic data model for the data in question. In this
example, we define two foundational data models: BatteryCellMetadata and
BatteryTimeSeriesData.

The first data model describes the metadata for the battery cell itself. This includes references to
sub-models for the cell components and materials. The second data model holds the state quantities
from the time-series data. We choose to separate the state quantities and derived quantities
because the raw data itself is inconsistent. Different raw data files often report different derived

Battery Interface Genome - Materials Acceleration Platform

8

data quantities. Therefore, to make the approach as widely applicable as possible, we only collect
the state quantities from the raw data itself. We then define functions to calculate the derived
quantities and map them to the corresponding data model.

Figure 3 shows a schematic overview of the structure of a DLite instance. A DLite instance has four
parts: a unique universal identifier (UUID), a description of the metadata schema used to generate
the instance, dimensions, and properties that contain the actual data. An instance is defined from a
metadata schema which itself has three parts: a URI, dimensions and properties. Each property
definition must have a name, a description, and a type (e.g. string, float, int, etc.). If it is necessary
to constrain the dimensions, this can be set using the dims field. If the property is a physical quantity
with units, the type of unit can be defined with the unit field.

Figure 3. An overview of the DLite approach to creating data models.

Figure 4 shows an example DLite data model definition for BatteryCellMetadata. The URI for the
data model is composed from the combination of the name, version, and namespace fields. The
description is a human-readable text defining the scope of the data model. We define the
dimensions of the data model as N number of battery cells, followed by a list of properties.

{
 "name": "BatteryCellMetadata",
 "version": "0.1",
 "namespace": "http://onto-ns.com/meta",
 "description": "A description of battery cell metadata",
 "dimensions": [
 {
 "name": "N",
 "description": "Number of battery cells"
 }
],
 "properties": [
 {

Battery Interface Genome - Materials Acceleration Platform

9

 "name": "uuid",
 "type": "string",
 "dims": ["N"],
 "description": "UUID of the battery cell"
 },
 {
 "name": "positive_electrode",
 "type": "ref",
 "$ref": "http://onto-ns.com/meta/0.1/BatteryElectrodeMetadata",
 "dims": ["N"],
 "description": "positive electrode metadata"
 },
 {
 "name": "negative_electrode",
 "type": "ref",
 "$ref": "http://onto-ns.com/meta/0.1/BatteryElectrodeMetadata",
 "dims": ["N"],
 "description": "negative electrode metadata"
 },
 {
 "name": "electrolyte",
 "type": "ref",
 "$ref": "http://onto-ns.com/meta/0.1/BatteryElectrolyteMetadata",
 "dims": ["N"],
 "description": "electrolyte metadata"
 },
 {
 "name": "separator",
 "type": "ref",
 "$ref": "http://onto-ns.com/meta/0.1/BatterySeparatorMetadata",
 "dims": ["N"],
 "description": "separator metadata"
 },
 {
 "name": "casing",
 "type": "ref",
 "$ref": "http://onto-ns.com/meta/0.1/BatteryCasingMetadata",
 "dims": ["N"],
 "description": "cell casing metadata"
 }
]
}

Figure 4. BatteryCellMetadata DLite data model.

Battery Interface Genome - Materials Acceleration Platform

10

The first property is the battery cell identifier. Each battery cell is assigned a UUID to provide a
consistent unique identifier for both tracking of the physical battery cell and for associating the cell
with its data. The second property is the positive electrode of the cell. The property type "ref"
references another DLite data model for battery electrode metadata given by the uri: http://onto-
ns.com/meta/0.1/BatteryElectrodeMetadata. Referencing other data models allows designers to
make encapsulation decisions for re-useable data models that avoid excess duplication. In the
BatteryCellMetadata description, we take the same approach for the negative electrode,
electrolyte, separator, and casing. All of the data models referenced in this use-case are included in
the FAIRBatteryData repository under: examples/entities.

Figure 5 shows the DLite data model definition for the BatteryTimeSeriesStateData. The first
property of the data model is the battery_id of the battery that was used to generate the data. This
references the UUID from the BatteryCellMetadata model. The second property is for the data and
timestamp generated by the measurement. The data model then includes five state quantities for
describing the time-series battery data: the test_time, battery_current, battery_voltage,
battery_temperature, and environment_temperature.

{
 "name": "BatteryTimeSeriesStateData",
 "version": "0.1",
 "namespace": "http://onto-ns.com/meta",
 "description": "A description of battery time series data",
 "dimensions": [
 {
 "name": "n_measurements",
 "description": "Number of measurements."
 }
],
 "properties": [
 {
 "name": "battery_id",
 "type": "string",
 "dims": ["n_measurements"],
 "description": "UUID of the battery that the data describes"
 },
 {
 "name": "date_time_stamp",
 "type": "string",
 "dims": ["n_measurements"],
 "description": "Date and time stamp of the measurement."
 },
 {
 "name": "test_time",
 "type": "float",
 "dims": ["n_measurements"],
 "unit": "s",

Battery Interface Genome - Materials Acceleration Platform

11

 "description": "Time of the measurement relative to the start of the
experiment."
 },
 {
 "name": "battery_current",
 "type": "float",
 "dims": ["n_measurements"],
 "unit": "A",
 "description": "Measured instantaneous electric current through the
battery."
 },
 {
 "name": "battery_voltage",
 "type": "float",
 "dims": ["n_measurements"],
 "unit": "V",
 "description": "Measured instantaneous voltage of the battery."
 },
 {
 "name": "battery_temperature",
 "type": "float",
 "dims": ["n_measurements"],
 "unit": "degC",
 "description": "Measured instantaneous temperature of the battery."
 },
 {
 "name": "environment_temperature",
 "type": "float",
 "dims": ["n_measurements"],
 "unit": "degC",
 "description": "Measured instantaneous temperature of the environment."
 }
]
}

Figure 5. BatteryTimeSeriesStateData DLite data model

3.2 Assign cell data and time-series data to DLite instances
First, we create a DLite collection of instances that describes the properties of the battery cell. This
includes not only an instance for the cell itself, but also all of the necessary components such as the
electrodes, electrolyte, active materials, etc. Figure 6 shows the code that we use, which instantiates
the cell metadata descriptions in four steps:

1. Define the metadata models. This step identifies the relevant DLite data models and
prepares them for instantiation.

2. Create instances. This step instantiates empty instances of the data models.

Battery Interface Genome - Materials Acceleration Platform

12

3. Group instances into a DLite collection. Because the battery cell description requires
multiple data models, we group all of the instances into a collection, such that they can be
accessed later.

4. Bind instances together in the cell model. This step binds the individual instances that we
have defined into a single cell model.

1. Define metadata models
datamodel = "BatteryCellMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryCellMetadata = dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatteryElectrodeMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryElectrodeMetadata = dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatteryElectrodeActiveMaterialMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryElectrodeActiveMaterialMetadata =
dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatteryElectrodeCurrentCollectorMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryElectrodeCurrentCollectorMetadata =
dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatteryElectrodeAdditiveMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryElectrodeAdditiveMetadata =
dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatteryElectrodeBinderMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryElectrodeBinderMetadata =
dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatteryElectrolyteMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryElectrolyteMetadata = dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "MolecularEntityMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
MolecularEntityMetadata = dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "LiquidSolventMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)

Battery Interface Genome - Materials Acceleration Platform

13

LiquidSolventMetadata = dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatterySeparatorMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatterySeparatorMetadata = dlite.Instance.from_url(f'json://{datamodel_path}')

datamodel = "BatteryCasingMetadata.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryCasingMetadata = dlite.Instance.from_url(f'json://{datamodel_path}')

collection = dlite.Collection()

2. Create instances
cell = BatteryCellMetadata(dims=[1], id='Chen2020Example')

pe = BatteryElectrodeMetadata(dims=[2])
pe_am = BatteryElectrodeActiveMaterialMetadata()
pe_cc = BatteryElectrodeCurrentCollectorMetadata()
pe_bnd = BatteryElectrodeBinderMetadata()
pe_add = BatteryElectrodeAdditiveMetadata()

ne = BatteryElectrodeMetadata(dims=[2])
ne_am = BatteryElectrodeActiveMaterialMetadata()
ne_cc = BatteryElectrodeCurrentCollectorMetadata()
ne_bnd = BatteryElectrodeBinderMetadata()
ne_add = BatteryElectrodeAdditiveMetadata()

elyte = BatteryElectrolyteMetadata(dims=[1,1])
salt = MolecularEntityMetadata()
solvent = LiquidSolventMetadata(dims=[2])
solvent_component_1 = MolecularEntityMetadata()
solvent_component_2 = MolecularEntityMetadata()

sep = BatterySeparatorMetadata(dims=[1])
case = BatteryCasingMetadata()

3. Group instances into a DLite collection
collection.add(label='cell', inst=cell)
collection.add(label='positive_electrode', inst=pe)
collection.add(label='positive_electrode_active_material', inst=pe_am)
collection.add(label='positive_electrode_current_collector', inst=pe_cc)
collection.add(label='positive_electrode_binder', inst=pe_bnd)
collection.add(label='positive_electrode_additive', inst=pe_add)

collection.add(label='negative_electrode', inst=ne)
collection.add(label='negative_electrode_active_material', inst=ne_am)

Battery Interface Genome - Materials Acceleration Platform

14

collection.add(label='negative_electrode_current_collector', inst=ne_cc)
collection.add(label='negative_electrode_binder', inst=ne_bnd)
collection.add(label='negative_electrode_additive', inst=ne_add)

collection.add(label = 'electrolyte', inst=elyte)
collection.add(label = 'salt', inst=salt)
collection.add(label = 'solvent', inst=solvent)
collection.add(label = 'solvent_component_1', inst=solvent_component_1)
collection.add(label = 'solvent_component_2', inst=solvent_component_2)
collection.add(label = 'separator', inst=sep)
collection.add(label = 'casing', inst=case)

4. Bind instances together in the cell model
cell.positive_electrode = [pe]
cell.positive_electrode[0].active_material = pe_am
cell.positive_electrode[0].current_collector = [pe_cc]
cell.positive_electrode[0].binder = pe_bnd
cell.positive_electrode[0].additive = pe_add

cell.negative_electrode = [ne]
cell.negative_electrode[0].active_material = ne_am
cell.negative_electrode[0].current_collector = [ne_cc]
cell.negative_electrode[0].binder = ne_bnd
cell.negative_electrode[0].additive = ne_add

cell.electrolyte = [elyte]
cell.electrolyte[0].salt = [salt]
cell.electrolyte[0].solvent_material = [solvent]
cell.electrolyte[0].solvent_material[0].molecular_entity[0]=[solvent_component_1]
cell.electrolyte[0].solvent_material[0].molecular_entity[1]=[solvent_component_2]

cell.separator = [sep]
cell.casing = [case]from pathlib import Path
import os
import dlite
from oteapi.datacache import DataCache
from oteapi_dlite.strategies.parse_excel import DLiteExcelStrategy

thisdir = Path(__file__).resolve().parent
entitydir = thisdir.parent / 'entities'
xlsxfile = (thisdir / "../data/BatteryTimeSeriesData" /
 "timeseries-full.xlsx")

cache_key = DataCache().add(xlsxfile.read_bytes())

config = {

Battery Interface Genome - Materials Acceleration Platform

15

 "downloadUrl": xlsxfile.as_uri(),
 "mediaType": "application/vnd.dlite-xlsx",
 "configuration": {
 "excel_config": {
 "worksheet": "rawdata",
 "header_row": "1",
 "row_from": "2",
 },
 },
}

coll_raw = dlite.Collection()
coll_processed = dlite.Collection()
session = {"collection_id": coll_raw.uuid, "key": cache_key}

parser = DLiteExcelStrategy(config)
session.update(parser.initialize(session))

parser = DLiteExcelStrategy(config)
parser.get(session)

Figure 6. Example code for instantiating battery cell metadata using DLite.

Next, we assign specific values to the DLite instances. In this use-case, the specific values used are
those reported by Chen et al. for the INR21700 M50 cell from LG Chem. The code used to assign the
values is shown in Figure 7.

assign properties to the instances. In this demo, we use the properties stated
by Chen et al in 10.1149/1945-7111/ab9050
cell.name = "INR21700 M50"
cell.manufacturer = "LG Chem"

pe.coating_width = [6.5e-2, 6.5e-2]
pe.coating_length = [79e-2, 79e-2]
pe.coating_thickness = [75.6e-6, 75.6e-6]
pe.coating_porosity = [0.335, 0.335]
pe.coating_tortuosity = [4.8, 4.8]
pe.coating_bruggeman_coefficient = [2.43, 2.43]
pe.loading = 24.69
pe_am.conventional_name = 'NMC811'
pe_am.crystal_density = 4950
pe_am.molecular_weight = 94.87
pe_cc.thickness = 16e-6

ne.coating_width = [6.5e-2, 6.5e-2]
ne.coating_length = [77.5e-2, 83.5e-2]
ne.coating_thickness = [85.2e-6, 85.2e-6]

Battery Interface Genome - Materials Acceleration Platform

16

ne.coating_porosity = [0.25, 0.25]
ne.coating_tortuosity = [14.25, 13.93]
ne.coating_bruggeman_coefficient = [2.92, 2.90]
ne.loading = 14.85
ne_am.conventional_name = 'Graphite-SiOx'
ne_am.crystal_density = 2260
ne_cc.thickness = 12e-6

salt.conventional_name = 'Lithium Hexafluorophosphate'
salt.linear_formula = 'LiPF6'
salt.smiles = '[Li+].F[P-](F)(F)(F)(F)F'
salt.molar_mass = 151.905
solvent_component_1.conventional_name = 'Ethylene Carbonate'
solvent_component_1.linear_formula = 'C3H4O3'
solvent_component_1.smiles = 'C1COC(=O)O1'
solvent_component_1.molar_mass = 88.062
solvent_component_2.conventional_name = "Ethyl Methyl Carbonate"
solvent_component_2.linear_formula = 'C4H8O3'
solvent_component_2.smiles = 'CCOC(=O)OC'
solvent_component_2.molar_mass = 104.10
solvent.molecular_entity_volume_fraction = [0.3, 0.7]

sep.porosity = 0.47
sep.tortuosity = 3.27
sep.thickness = 12e-6
sep.coated = 'true'

Figure 7. Example code for assigning values to a battery cell metadata instance.

Now we need to read some time-series data to associate with the cell. One feature of DLite is the
possibility to automatically generate a metadata model from a file if none is provided. In this case,
we have simulated a 1C discharge of the cell using the battery simulation framework BattMo and
saved the results as a csv file.

uri = 'http://onto-ns.com/meta/0.1/BatteryTimeSeriesData'
id = 'simualted-discharge-battmo' # Give the dataset a human-readable name
raw_data = dlite.Instance.from_location(
 driver='csv',
 location=datadir / 'BatteryTimeSeriesData/Chen2020_simulated_discharge.csv',
 # Comment out the below line to automatically generate the metadata
 # options=f'infer=false;meta={uri};id={id}',
)

Figure 8. Example code for reading raw battery time-series data from a csv file and automatically
generating a DLite metadata model.

Battery Interface Genome - Materials Acceleration Platform

17

In principle, it is perfectly reasonable to work directly with the metadata model that is generated by
DLite automatically. However, if one wishes to conform multiple data sources to a single data model,
this can be done, for example, using the code shown in Figure 9.

datamodel = "BatteryTimeSeriesData.json"
datamodel_path = os.path.join(entitydir, datamodel)
BatteryTimeSeriesData = dlite.Instance.from_url(f'json://{datamodel_path}')

processed_data = BatteryTimeSeriesData(dims=[raw_data.rows])
processed_data.test_time = raw_data.time
processed_data.battery_voltage = raw_data.voltage
processed_data.battery_current = raw_data.current
processed_data.battery_temperature = raw_data.cell_temperature
processed_data.environment_temperature = raw_data.environment_temperature

Figure 9. Example code for reading raw battery time-series data from a csv file and automatically
generating a DLite metadata model.

At this point, our DLite instances for both the cell description and the simulated time-series data
have been created and filled with data. The next step is to create a triplestore that contains BattINFO
terms to perform the mappings.

3.3 Create a triplestore and add mapping triples
A triplestore is a way to collect and store a set of RDF triples. This allows us to not only collect triples
defined in an ontology like BattINFO, but also to make new triples about how the properties of our
data relate to BattINFO terms. Figure 10 shows the code we use to setup the triplestore, ts, and load
the BattINFO triples. Because BattINFO is a domain ontology of the EMMO, it uses UUID values when
creating its object IRIs. This can create problems for humans who want to identify terms based on
their prefLabels rather than random strings. This is a known issue that will be addressed in future
releases. Currently, to deal with that issue we create a dictionary, d, mapping object prefLabels to
the IRI values.

ts = Triplestore("rdflib")
ts.parse(f"{ontodir}/battinfo-merged.ttl")

BattINFO namespace
BATTINFO = ts.bind(
 'battinfo', 'https://big-map.github.io/BattINFO/ontology/BattINFO#')

Dict mapping prefLabel to IRI
d = {o.value: s for s, o in ts.subject_objects(SKOS.prefLabel)}

Figure 10. Code for instantiating a triplestore and populating it with triples from BattINFO.

We now create a set of triples that map aspects of our data to BattINFO terms. We use the
add_mapsTo method of the triplestore, as shown in Figure 11. In this example, we use our dictionary

Battery Interface Genome - Materials Acceleration Platform

18

of BattINFO prefLabels, d, to find the IRI corresponding to "InstantaneousCurrent" and map it to the
battery_current property of the BatteryData object.

map cell components
ts.add_mapsTo(d['Electrode'], cell, 'positive_electrode')
ts.add_mapsTo(d['Electrode'], cell, 'negative_electrode')
ts.add_mapsTo(d['Electrolyte'], cell, 'electrolyte')
ts.add_mapsTo(d['Separator'], cell, 'separator')
ts.add_mapsTo(d['BatteryCellContainer'], cell, 'casing')

map positive electrode properties
ts.add_mapsTo(d['Porosity'], pe, 'porosity')
ts.add_mapsTo(d['Tortuosity'], pe, 'tortuosity')
ts.add_mapsTo(d['Width'], pe, 'coating_width')
ts.add_mapsTo(d['Height'], pe, 'coating_length')
ts.add_mapsTo(d['Thickness'], pe, 'coating_thickness')
ts.add_mapsTo(d['MolarMass'], pe_am, 'molecular_weight')
ts.add_mapsTo(d['Thickness'], pe_cc, 'thickness')

map negative electrode properties
ts.add_mapsTo(d['Porosity'], ne, 'porosity')
ts.add_mapsTo(d['Tortuosity'], ne, 'tortuosity')
ts.add_mapsTo(d['Width'], ne, 'coating_width')
ts.add_mapsTo(d['Height'], ne, 'coating_length')
ts.add_mapsTo(d['Thickness'], ne, 'coating_thickness')
ts.add_mapsTo(d['MolarMass'], ne_am, 'molecular_weight')
ts.add_mapsTo(d['Thickness'], ne_cc, 'thickness')

map raw data properties
ts.add_mapsTo(d['CellVoltage'], raw_data, 'voltage')
ts.add_mapsTo(d['InstantaneousCurrent'], raw_data, 'current')

map processed data properties
ts.add_mapsTo(d['CellVoltage'], processed_data, 'battery_voltage')
ts.add_mapsTo(d['InstantaneousCurrent'], processed_data,
'battery_current')ts.add_mapsTo(d['InstantaneousCurrent'], BatteryData,
'battery_current')

Figure 11. Example of data mapping

3.4 Query the triplestore using SPARQL
SPARQL is a semantic query language that can retrieve and manipulate data that is stored in our
RDF triplestore. Here, we create a simple demonstration that selects all the triples in the triplestore
that have subjects which map to the BattINFO term for CellVoltage
(electrochemistry:EMMO_4ebe2ef1_eea8_4b10_822d_7a68215bd24d). Figure 12 shows the code

Battery Interface Genome - Materials Acceleration Platform

19

used to generate the query and Figure 13 shows the result. In this case, the query returns the
properties voltage from our raw_data instance (e028f01d-3534-4ea1-8b4e-9a565d92b219) and
battery_voltage from our processed_data instance (8b26fc17-cbf9-4a9f-8207-a4c645535045). This
is a simple example for demonstration purposes. SPARQL queries can be powerful tools in exploring
datasets, which will be investigated in future use-cases in greater detail.

query the triplestore
query_text = """
PREFIX map: <http://emmo.info/domain-mappings#>
PREFIX emmo: <http://emmo.info/emmo#>
PREFIX electrochemistry: <https://big-
map.github.io/BattINFO/ontology/electrochemistry#>

SELECT *
WHERE {
 ?subject map:mapsTo electrochemistry:EMMO_4ebe2ef1_eea8_4b10_822d_7a68215bd24d
.
}
"""
query_result = ts.query(query_text)

Figure 12. Example SPARQL query of the triplestore, requesting all entities mapped to the BattINFO term
CellVoltage.

e028f01d-3534-4ea1-8b4e-9a565d92b219#voltage
8b26fc17-cbf9-4a9f-8207-a4c645535045#battery_voltage

Figure 13. Result of the SPARQL query

The purpose of this deliverable is to demonstrate a first use-case applying terms from the Battery
Interface Ontology (BattINFO) to semantically annotate battery data. We select a use-case of battery
time-series data, which is among the most abundant type of battery data generated. To create
mappings to BattINFO terms, we begin by creating DLite data models for a battery and its time-
series data. The DLite data model acts as a template which can be populated with actual data and
serve as a basis for creating mapping triple statements. Using data reported in the literature and
simulated using the battery modelling toolbox BattMo, we create metadata description of the cell
and automatically parse the time-series data from a csv file. We then instantiate a triplestore and
fill it with triples from BattINFO. Additional triples are added that create direct mappings between
properties of the DLite instance and terms in BattINFO. The triples can then be queried using
SPARQL.

Future development will focus on extending the concepts laid out in this deliverable towards other
types of battery data. As a next step, we will map the input and output files for battery cell
simulations with the goal of establishing easy reproducibility and interoperability of results among
different battery simulation software.

Battery Interface Genome - Materials Acceleration Platform

20

[1] S. Clark et al., “Toward a Unified Description of Battery Data,” Adv. Energy Mater., vol.
2102702, 2021.

[2] C.-H. Chen, F. Planella, K. O’Regan, D. Gastol, D. Widanagea, and E. Kendrick, “Development
of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models,”
J. Electrochem. Soc., vol. 167, p. 080534, 2020.

